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1 Summary of the Research Results

The following goals have been accomplished in the course of this research:

1. We have analyzed nonlinear energy transfer between scales of motion in homogeneous
isotropic and uniform shear turbulence using results of direct numerical simulations.
The main conclusion drawn from these analyses is that the transfer is local in the
spectral space i.e. occurs between two similar small scales, but results from interactions
of these scales with much larger and energetic scales from the energy containing range
(local energy transfer through nonlocal triad interactions).

2. The results of this investigation were used to develop a new theory of spectral energy
dynamics. The theory properly accounts for properties of interscale energy transfer
observed in the simulations, predicts the form of the energy spectrum in the dissipation
range in agreement with experiments and simulations, predicts correctly the form of
the energy spectrum in the inertial range, and provides a plausible physical mechanism
responsible for the observed transfer process.

3. We have devised a physical space representation of the spectral energy transfer among
scales with predefined sizes and found that the interscale energy transfer is spatially
intermittent and local in the physical space.

4. The physical space representation of the spectral energy transfer was used in an analysis
of subgrid-scale nonlinear interactions. The subgrid-scale transfer was found to be
composed of a forward and an inverse transfer components, both being significant in
dynamics of resolved scales. Energy exchanges between the resolved and unresolved
scales from the vicinity of the cutoff wave number dominate the subgrid-scale processes
and the energetics of the resolved scales are unaffected by the modes with wave numbers
greater than twice the cutoff wave number. The dominance of nonlinear interactions
among the largest scales in the subgrid-scale energy transfer process suggests that the
resolved nonlinear term may serve as a basis of a new approach to the subgrid-scale
modeling.

5. The physical space representation of the subgrid-scale transfer was used in assessing
the dynamical importance of large scales of motion (coherent structures) in isotropic
turbulence. The spatial structure of the exact subgrid-scale transfer was qualitatively
compared with the spatial structure of a number of physical quantities which are con-
sidered to govern the dynamics of the large scales of turbulence. It was found that
all quantities determined by the first derivatives of the velocity field correlate poorly
with the transfer which is largest at the peripheries of regions characterized by large
values of these quantities. The spatial structure of the transfer correlates much better
with the large scale energy and the Smagorinsky's subgrid-scale energy transfer which
is determined by the second derivatives of the velocity field. None of the considered
quantities was capable of predicting sign of the subgrid-scale transfer.
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6. The interscale energy transfer analysis in both spectral and physical representat lun i•h,-
been performed using results of direct numerical simulations of the Kida flow ptcrturimcd
by Dr. Pelz at Rutgers University. The results of this analysis will serve to supplcmwnt
an ongoing investigation at Rutgers of the process of generation of small scales in such
a flow.
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5 Research Papers

This section consists of three journal papers (one published, one submitted, and one in
preparation for publication) and two conference proceedings, all in chronological order, which
provide detailed information about research results summarized in section 1.
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Center for Turbulence Rejearch
Pr'oceedings of the Summer Program 1990

Interscale Energy Transfer in Numerically
Simulated Homogeneous Turbulence

By J. A. Domaradzki1 , R. S. Rogallo 2', and A. A. Wray2

Energy transfer is investigated for flows obtained by direct numerical simulations
of low Reynolds number homogeneous-shear and isotropic turbulence and by large-
eddy simulations of high Reynolds number isotropic turbulence. The transfer in
spectral space is found to be local but results from interaction between separated
scales. The transfer among small scales is highly intermmitent in physical space.
The measurements suggest an important correlation between transfer among small
scales and the energy of large scales.

1. Introduction

Using results of low-Reynolds-number direct numerical simulations (DNS) Do-
maradzki and Rogallo (1988, 1990) analyzed the energy transfer in isotropic turbu-
lence and concluded that beyond the energy containing range the energy was trans-
ferred among scales of motion similar in size but that the interactions responsible
for this local energy transfer were nonlocal in k-space. The same transfer mech-
anism was also found when the eddy-damped quasinormal Markovian (EDQNM)
approximation was applied to high Reynolds number flows which are inaccessible
to the DNS technique.

The conclusions concerning the apparent universality of this transfer mechanism
are extended in this work to homogeneous shear flows and to high Reynolds number
isotropic flows obtained by large-eddy simulation. We also devise a physical-space
representation of the spectral energy transfer calculated in k space that allows us
to estimate the spatial intermittency of the energy transfer and the spatial corre-
lation between quantities defined using only large-scales flow information and the
dynamically important energy transfer among different scales. In particular this is
useful in evaluating the performance of subgrid-scale models formulated in physical
space e.g. the classical Smagorinsky eddy viscosity model.

2. Numerical Velocity Fields

We have used velocity fields generated by numerical simulations that were run
for sufficiently long times to fully establish nonlinear interactions.

The velocity field C128U8 is the result of a DNS of uniformly sheared homo-
geneous turbulence performed by Rogers (1986) and LES128 is the result of a

1 University of Southern Cafornia

2 NASA Ames Research Center



2 J. A. Domaradzki, R. 5. Rogallo, and A. A. Wray

large-eddy simulation of forced isotropic turbulence, at nominally infinite Reynolds
number, performed by Chasnov (1990). The energy spectrum of LES128 exhibits
a k- 5 /' law over the entire range of simulated wavenumbers. The field K128 is
obtained from a DNS of isotropic turbulence performed by Rogallo (unpublished).
Its use is motivated primarily by the fact that the two dynamically important pro-
cesses that determine the evolution of the energy spectrum, i.e. viscous dissipation
and nonlinear transfer, are very well resolved. This resolution is obtained at the
expense of lowering the Reynolds number as compared with the two other cases.

3. Basic Quantities

The Navier-Stokes equations, in the Fourier spectral representation, for the fluc-
tuating velocity field u,, subjected to uniform shear U = (8:2,0, 0) are

( + u) (k,t) = (-i/2)Pa,,(k) J uJ(p, t),.(k- p,t)dp

+2.--•--U2 (k, t) + ski 0- un(k,t) - i36•,,, 2(k,t) (1)

ik.,,. = 0 (2)

where

Pt.(k) = k,.(Sa - kkil/k2) + ki(6m. - knk,/k 2 ), (3)

v is the kinematic viscosity, and the summation convention is assumed. In subse-
quent formulae explicit time dependence will be omitted.

The equation for the energy amplitudes ½1 u(k)12 = ½,,,(k)u(k) is obtained from
(1)

081 1221 12 8 1 2
0j-u(k) = -2, u(k) +T(k)+ O _Jlu(k)l2 - sRe{ui(k)u;(k)} (4)

where the asterisk denotes complex conjugate.
The nonlinear energy transfer is

T(k) = :im [u:(k)P.Im(k) J uI(p).2.(k - p)dp] (5)

and the following two terms in (4) containing a describe energy transfer due to the
mean shearing deformation of turbulent eddies and turbulent energy production
by the mean shear respectively. A detailed description of these effects is given
by Deissler (1961), Fox (1964), and Lumley (1964), and is summarized in Hinze's
(1975) monograph. Note that the corresponding equations for isotropic turbulence
are obtained from (1) by taking a = 0. In particular, the nonlinear transfer term (5)
has the same form for both homogeneous shear turbulence and isotropic turbulence.
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The principal quantity of interest here is the energy exchange between a given

mode k and all pairs of modes p and q = k - p that form a triangle having k as
one of the legs and where p and q lie in prescribed regions P and Q of the spectral
space respectively. For a given k, confining p and q to VP and Q is equivalent to
selecting a specific set of triangles from all of the possible triangles contributing to
the energy transfer at the wavevector k in (5).

In this work we choose 'P and Q as shells in the wavenumber space k - ! Ak <

IkI < k + !Ak with a shell thickness Ak. This choice is natural for isotropic
turbulence and is also convenient for other homogeneous fields as first suggested by

Batchelor (1953).
The net nonlinear energy transfer to wavenumber band k is denoted by T(k)

and the contribution to this transfer resulting from nonlinear interactions between
wavenumbers in the band k and wavenumbers in the bands p and q is denoted by
T(k1p, q). According to this definition

T(k) = E E T(kp, q) = P(kjp) (6)
p q p

where the P(kjp) is the result of summation of T(kjp, q) over all bands q and is
interpreted as the contribution to the net energy transfer into band k due to all
interactions involving band p.

The functions T(k), P(klp), and T(k[p, q) give progressively more detailed infor-
mation about energy transfer among different scales of motion in a turbulent field.
The method of computing these functions is described by Domaradzki and Rogallo
(1990).

4. Analysis of Energy Transfer in Spectral Space

All of the contributing terms of (4), computed for the field C128U8 and averaged
over spLrical shells with thickness Ak = 1, are plotted in figure 1. The calculation
of the linear transfer sk1 y.-flu(k)12 suffers from low accuracy due to the coarse

resolution of k, and we believe that this term is dose to zero for k > 40, contrary
to the plotted results. Despite this numerical error a few important conclusions

can be drawn from these results. Nonlinear transfer, viscous dissipation, and mean
shear all make significant contributions to the energy balance for wavenumbers
k < 40 which comprise the energy containing range and a significant fraction of
the dissipation range. Energetics of the smaller eddies (k > 40) is affected only
by nonlinear transfer and viscous dissipation which are roughly in balance. Thus
the energetics of turbulence in about half of the spectral domain (k > 40) is not
affected directly by the large scale mean shear.

The triad structure of the nonlinear energy transfer term is illustrated by plotting
P(klp) in figure 2a as a function of k for p fixed in a wavenumber band beyond

the peak of the energy spectrum. The contributions T(klp, q) to P(kip), from all
significant bands q, Walso included. The peaks of P(klp) are located in the vicinity
of the band p indicating that the energy transfer is primarily between comparable
scales of motion. However, the decomposition into functions T(klp, q) reveals that
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FIGURE 1. Spectral energy balance for the field C128U8. -- production,

----. dissipation, ---- nonlinear transfer, ---- linear transfer. The linear transfer

data has been smoothed.

the largest contributions to this local transfer come from the interac:tion,3 involving

a scale in the energy containing range 5 < q < 20. Thus for homogeneous shear

flow we obtain the same result as previously reported by Domaradzli and Rogallo

(1988, 1990) for isotropic flows: local energy transfer between two scales beyond the

energy containing range results from nonlocal interactions with scales in the energy

containing range.
Analysis of the nonlinear transfer for the two remaining velocity fields, LES128

and K128, provided the same qualitative results.

An attempt was made to find a similarity scaling for the functions T(klp, q). For

a given energy spectrum the following transformation collapses reasonably well all

curves T(k 1p, q) for a band p beyond the energy containing range.

T(kl1p, q)= pE(p)E(q)T (k P) (7)

The similarity variable =(k - p)/q is deduced from geometric relations for a

triad with legs k, p, and q and the scaling factor pE(p)E(q) is ad hoc ( but is found in

the EDQNM theor,- for power-law spectra in the disparate-scale limit ). In figure 2b

we show the result of scaling (7) applied to the measured functions '(k 1p, q) of
figure 2a. Interestingly, the transfer scales with the energy E(q) of the large eddies

rather than with their rate-of-strain qE(q)/1 which is the scaling postulated by a

number of classical closure hypotheses (Monin and Yaglom, 1975). We have not

been able to propose a convincing dynamical model of transfer processes which

would provide scaling (7).
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FIGURLE 2. Detailed triad contributions to energy transfer for case C128U8: (a)
unsealed, (b) scaled by (7). The transfer spectra T~•, q) are shown for band
40 < p < 45, and all bands q that make a significant contribution to P(klp).-0 < q < 5, & --- 5 < q < 10 a ........ 10 < q < 15,,& ........ 15 < q < 20,
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5. Physical Space Representation of Spectral Energy Transfer

Let us denote by N:Q(k) the contribution to the integral (the nonlinear term)
in (1) from only those interactions between modes p and q = k - p such that
each of them is confined to one of the two prescribed wave.amber bands P and Q.
This quantity is computed using the method described by Domaradzki and Rogallo
(1990). Its Fourier transform to physical space, N:2(x) say, gives the contribution
to the rate of change of velocity in physical space u,(x, t) caused by the nonlinear
interactions involving two scales from the respective wavenumber bands P and Q
in the spectral space. Note that these interactions influence all modes k that can
form a triangle with modes such that one is in P and the other in Q. Consider next
a velocity field truncated to a prescribed wavenumber band K, i.e.

u =(k) {U(k), if kE(
0, otherwise.

The Fourier transform of (8) to physical space, un(x) say, represents the contri-
bution in physical space that scales from band X make to the total velocity. The
contracted product of these two physical space quantities

T'2(x) = ux(x)N72(x) (9)

gives a physical space representation of the energy transfer to/from modes in the
k-band due to their nonlinear interactions with modes in the p- and q-bands.

An interesting case is obtained by dividing wavenumber space into two disjoint
regions X (k < kc) and ? (k > k,). The quantity

TsGs(xlke) = TA 7 '7(x) + TK:• (x) (10)

provides a physical space representation of the rate of change of energy of large
scales k < k. due to nonlinear interactions involving small scales k > k,. This is
precisely the energy transfer process which is the suoject of subgrid-scale modelling.

We have computed transfer functions (9) and (10) for various wavenumber bands
of the field K128. The low wavenumber band Q is chosen to cover the entire
energy containing range 0 < q < 10. Figure 3a shows one plane from the full
transfer (9) representing in physical space the energy transfer to eddies in the band
23 < k < 28 caused by their interactions with eddies in the bands 20 < p < 25 and
0 < q < 10. The transfer function is spatially intermittent and is predominantly
positive indicating a flow of energy from the larger scales p to the smaller scales
k. In figure 4b we plot the same function for 17 < k < 22. The transfer is now
predominantly negative as expected and occurs at roughly the same locations as
the transfer of figure 3a. We thus conclude that the local energy transfer between
similar wavenumber modes in spectral space is intermittent in physical space.

We have attempted to correlate this spatial distribution of energy transfer with
a number of simpler quantities (rate-of-strain, dissipation, energy, etc.) calculated
from the velocity field truncated to contain only either large or small scales. In
figures 4a and 4b we show the physical-space distribution of energy for the velocity



Energy Transfer in Homogeneous Turbulence 7

10.L.U _ _ _ J _ _ _ _._ 0 *: . j

(a)

- •

.. .

IL LU02. LM Cm S.M S.

(a)

25tO,=, <• < 10: (a) 23 < 2,() 7<k. 2

- -... " -' )

-e I I sm 4m ~

i I
* 0m'z•. ,, ., -~

LUS.V"-

~g

*.11W '-

L="L l~m *.•m •m .,,- km oj#

FIUE . neg tade T:'•x)o K2 in pTsia pc (r2

25,0 •<1: () 2<•<2,(bI7< <22

I • i i |



8 J. A. Domaradzkin, R. S. Rogallo, and A. A. Wrazy

- N.U

'00

4.0.

3.W.a

(a)7
Z:6

(a)

FIGURE 4. Turbulent energy in physical space for the velocity field truncated in
spectral space to wavenumber band: (a) 23 < k < 28, (b) 0 < k < 10.
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field truncated to 23 < k < 28 and 0 < k < 10, respectively. Both energy fields
correlate very well with the energy transfer among small scales shown in figure 3.
Correlation of other calculated quantities with the energy transfer, notably the
square of the rate-of-strain tensor, was generally much worse. Therefore we conclude
that the energy transfer among small scales occurs mostly at those physical locations
that contain large amounts of turbulent energy rather than at the locations of
high strain rate. This correlation is the physical space counterpart of the observed
importance of the nonlocal triads in the energy transfer process in spectral space.

We have used formula (10) to calculate subgrid-scale (SGS) energy transfer for
the field K128 with the cutoff wavenumber k. = 10. The full SGS transfer field,
plotted in figure 5a for a typical plane, is characterized by the presence of both
negative and positive regions. These indicate energy flux from and to the large
scales respectively due to subgrid-scale interactions. The classical Smagorinsky
model (Smagorinsky, 1963) for this transfer, based on the velocity field truncated
to the large scales 0 < k < 10, is plotted in figure 5b. Note that the model captures
properly the locations of the regions where the transfer is most intense but fails
completely to predict the inverse energy transfer from small to large scales.

6. Conclusions

Using results of direct numerical simulations of homogeneous shear turbulence we
have shown that the nonlinear energy transfer in spectral space beyond the energy
containing range has the same character as reported previously for isotropic turbu-
lence: local energy transfer caused by nonlocal triad interactions. The same conclu-
sion was reached for velocity fields obtained in large-eddy simulations of isotropic
turbulence at high Reynolds numbers.

An ad hoc scaling roughly collapses the transfer T(kjp, q) to a self-similar foom.
This scaling implies an important role which the energetic scales play in the energy
transfer among small scales, but the process does not appear to be simply straining
of the small scales by the large ones.

We have devised a physical space representation of the energy transfer processes
among scales of motion belonging to three distinct wavenumber bands in spectral
space and conclude from it that the energy transfer among small scales is highly
intermittent in physical space. Furthermore, regions of significant transfer appear
to correlate better with regions of significant large-scale energy than with those of
significant large-scale strain rate.

As a particular case we have calculated the subgrid-scale energy transfer in
isotropic turbulence. This SGS transfer exhibits regions of energy drain from large
to small scales as well as significant regions of reversed energy transfer from small
to large scales. The Smagorinsky eddy viscosity model captures the locations of
the most intense transfer but predicts that it is always from large to small scales,
contrary to the measurements from direct calculations.
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where N,1° is (3) calculated with one of the contributing velocity

Abstract-Direct numerical simulations of homogeneous turbu- fields truncated to P and the other to Q. Details of such calculations

lence are used to analyze energy transfer among scales of motion in are provided in [2]. For homogeneous turbulence the regions P and
spectral space. A physical space representation of such a spectral Q are usually chosen as spherical wavenumber bands. Similarly trun-

energy transfer is devised and applied to the analysis of an eddy cating velocity u'(k) in (4) to a spherical shell K results in a quantity
viscosity with a sharp spectral cut-off. TK°e(k) which, after averaging over X, is interpreted as the energy

transfer to the band X resulting from nonlinear interactions of scales

1 Introduction in K with scales in P and Q.

Statistically homogeneous turbulent flows are conveniently repre- 3 Interscale Energy Transfer in Physical Space

sented in spectral (Fourier) space. In such a representation dynami-
cally important, elementary nonlinear interactions involve three dis- Inverse Fourier transform, signified by tilde, of Ný(k) is the sum

tinct modes with their wavenumbers forming a closed triad. Under- of the convection and pressure terms in the Navier-Stokes equation

standing these interactions is of paramount importance in the theory in the physical space coordinates

of turbulence since essentially all turbulence closures rely on assump. -fi(X) ap(x)
tions about the nature of the nonlinear interactions. Recently, using 1f',,(x) = -(5)x)- - x(

results of direct numerical simulations (DNS) Domaradzki and Ro- • 8z,(
gallo [1] [2] analyzed the energy transfer in homogeneous turbulence. Similarly, using N.,'(k) we can define its physical space coun-

They concluded that beyond the energy containing range the energy terpart A.712(x) as well as .N°fa(x) which is the inverse Fourier
was transferred among scales of motion similar in size but that the transform of N,&'°(k) truncated to the band X. 9:1(x) can be

interactions responsible for this local energy transfer were nonlocal interpreted as the contribution to the rate of change of the velocity
in h-space. The importance of such nonlocal triadic interactions in field irs,(x) at a point x made by the nonlinear interactions involving

the evolution of turbulent flows has been confirmed by Yeung and modes from the bands P and Q. Note that these interactions infiu-

Brasseur [31 who also provided analytical arguments [4] supporting ence all modes k which can form a triangle with two other modes

conclusions drawn from DNS. such that one is in P and the other in Q. Rfp'2(x) represents a c-
Despite the usefuilness of spectral representation as a theoretical tribution to the rate of change of .,(x) which is made by all modes

and numerical tool in turbulence research, various quantities (veloc- from X interacting nonlinearly with modes in P and Q.
ity, energy, vorticity, etc.) in the physical space often provide a more The rate of change of the turbulent ezergy e(x) = 1,f(x).(x)
natural description of turbulent flows. Thus it is of interest to have at a point x caused by the nonlinear interactions is
the physical space representation of the nonlinear transfer processes
that dominate the spectral space dynamics. One such representation e = (6)

has been proposed by Dornaradzki et al. [5]. In this paper we discuss
other possible ways of representing detailed spectral energy transfer Our goal is to decompose (6) into contributions from the interat-

in the physical space. tions among modes from predefined wavenumber bands K,P, and Q
i.e. to find a physical space counterpart of TQ'•(k) which itself is

2 Interscale Energy Transfer in Spectral Space the result of such a decomposition of the transfer T(k) performed in

the spectral space. Despite uniqueness of such a decomposition in the

The equation for the energy amplitudes 41u(k)1' = 1u,(k)u,(k) spectral representation, the procedure is ambiguous in the physical

is: space. Possible definitions are:

a Ilu(k)2' = -2vk,•lu(k)l_ + T(k) (1) T1
1c' Q() = i'•(x)N'(x) (7)

where u,(k) is the velocity field in spectral space, with the ex- T2X ) -= j)NAYQ), (8)

plicit dependence on time omitted, the asterisk denotes complex con-
jugate, v is the kinematic viscosity, and T(k) is the nonlinear energytranser °()= f-.(x)9r11(x), (9)

where g(x) is the inverse Fourier transform of u,•(k) truncated
T~k) = Re(u;(k)&(k)). (2) to the band K.

In the last equation N,&(k) is the nonlinear term in the Navier. Function tfPQ(x) is a straightforward counterpart of T (k),

Stokes equation with a product of f and R! taken in the physical rather than in

the spectral spa;ce. However, since ur-(k) vanishes outside X, the

N.(k) = (-i/2)Pa.,(k) J d~pu1(p)u.(k - p), (3) multiplication in the spectral space implicitly truncates N.7'(k) to

the sume band so that T'P2(k) expresses transfer to the modes 'X

x only. In f"oa(x) the effect of nonlinear transfer to modes outside

where tensor P,,m(k) accounts for the pressure and incompress- K is present in the term R.
ibility effects. The summation convention is assumed thrughout. An explicit t-uncation of N,.'O(k) to K and um bltiplac• k by

Detailed energy transfer to/from mode k caused by its interac- < seems to rectify this problem resulting in (8). The deawba '

tions with wavenumbers p in a pres-cbed regionP of the wavenum- this definition i, that it does not Satisfy a natural condition:

ber space and q = k - p in another region 2 is
Oe(x) (10)

T+'Pe(k) = J,•4,(k)Nf(k)) (4) at.18
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which is satisfied by both (7) and ý9). Acknowledgments. Work of one of the authors Ai AID) was sup.
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they are affected by nonlinear interactions with modes from P and
Q.

Thus none of the above definitions is an exact counterpart of the J W 7
spectral transfer T-'2(k) but (9) is the most appealing candidate. I

An interesting special case is obtained by dividing a wavenumber
space into two disjoint regions X (k < k,) and P (k > k,). Quantity a,

Tscs(xik,) = t*A'P(x) + T: '(x) (11)

provides a physical space representation of the rate of change of
energy of large scales (k < k,) due to their nonlinear interactions I4
through wavenumber triads which have at least one of the legs in the
region P. This is precisely the energy transfer process which is the
subject of the subgid-scale modeling. '-

We have computed transfer functions (7) and (11) for the statisti- , " , * "
cally isotropic velocity field obtained in direct numerical simulations
performed with a resolution of 1238 modes (maximum wavenumber
k = 64). The low wavenumber band Q remains always fixed and is ,.,,,__________ -__..
chosen to cover the entire energy containing range (0 < q < 10). Fig. -o - ,. :"
ure I shows one plane from the full transfer (T) representing in the . ..
physical space the energy transfer to eddies in the band 23 < k < 28
caused by their interactions with eddies in the bands 20 < p < 25 . " .
and 0 < q < 10. The transfer function is spatially intermittent and Fig.l. Energy transfer in physical space fP for 23 < k <
is predominantly positive, indicating a flow of energy from the larger 28,20 < p < 25, 0 < q < 10.
scales p to the smaller scales k.

We have attempted to correlate this physical energy transfer with
a number of simpler quantities (rate-of-strain, dissipation, energy, . .
etc.) calculated from the velocity field truncated in such a way as to i
contain only either large or small scales. We found that the energy of .
the velocity field truncated to large scales 0 < k < 10 correlates very I
well with the energy transfer among small scales shown in figure 1.
Correlation of other calculated quantities with the energy trander, - I,.. t '
notably the square of the rate-of-strain tensor, was generally much
worse. Therefore we conclude that the energy transfer among small,_ ' g "/
scales occurs mostly at those physical locations which contain large L . • " -

amounts of turbulent energy rather than at the locations of high . . .- .( ,
strain rate, an unexpected result. Indeed, until this paradox is re-
solved, we can not be confident that the particular measure of energy , - .
transfer that we have used is the appropriate one. ,

We have used formula (11) to calculate subprid-scale (SGS) en-
ergy transfer for the same field with the cutoff waveanumber k• = 10. . -

Aplane from the ful SGS transfer field is plotted in figure 2. The t dtransfer is characterized by the presence of both negtive and positive ... .,•

regions. These indicate energy flux from and to the large scales re- L

spectively due to their interactions with the smaller scales. Standard " .. . "
subpid-scale eddy viscosity models predict transfer in one direction Fig.2. Subprid scale energy transfer in physical space TsGs(34k)
only, from large to small scales. for k. = 10.
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Detailed transfer functions T(k I p,q), which express turbulent energy transfer rate to modes
k caused by their nonlinear interactions with modes p and q, are analyzed using results
of direct numerical simulations of homogeneous turbulence. A previously found
phenomenological scaling for the functions T(klp,q), which brings them into a self-similar
form, is used to deduce the form of the energy spectrum in the dissipation range
proportional to k -2 exp( -ak) and the transfer spectrum proportional to exp( -ak). A

physical mechanism of the energy transfer process consistent with the self-similarity scaling is
proposed.

I. INTRODUCTION number bands centered at wave numbers p and q, respec-

Navier-Stokes equations for an incompressible, homo- tively. Similarly, truncating velocity u*(k) in (5) to a
Neneou os turbulentflowuhaveithe followingormpissplecl hspherical shell .Y, centered at a wave number k, results in

geneous turbulent flow have the following fourm in spctral a quantity T ' (k), which is nonzero only for those
(Fourier) representation (see, e.g., Lesieur, pp. 92-94): modes k that belong to the region X'. Summing this last

(3 quantity over all modes in .Y results in a function denoted
Su.(k) = -vk 2u,(k) +Ni(k). (1) as T(klp,q), which is interpreted as the energy transfer to

the band XY resulting from nonlinear interactions of scales
Here, u.(k) is the velocity field in spectral space, with the in X with scales in 2 and .•.
explicit dependence on time omitted, v is the kinematic Total nonlinear energy transfer T(k) to a wave-
viscosity, and N.(k) is the nonlinear term number band k (i.e., the region X"*) is obtained by sum-

ming contributions T(k Ip,q) from all possible bands p and
N,(k) P= . (k) f d3p u,(p)u.,(k--p), (2) q:

where tensor P,,m(k) accounts for the pressure and incom- T(k)= X • T(k p,q)= XP(klp). (6)
pressibility effects. The summation convention is assumed P q P
throughout. Here, the function P(klp) is a result of summation of

The equation for the energy amplitudes 1 u(k) 12 T(kIp,q) over all q bands and is interpreted as the energy

- fu,,(k)u*(k), where the asterisk denotes a complex con- transfer between wave-number bands k and p. Also note
jugate, is obtained from (1) and has the following form: that T(k) can be obtained from (4) by summing T(k)

over all modes in the wave-number shell k.
a 12= +T(k). (3) Functions T(k), P(klp), and T(klp,q) give progres-

at2 uaJ -2hA' 2u(k)12  sively more detailed information about energy transfer
among different scales of motion in the turbulent field.

In the last equation T(k) is the nonlinear energy transfer For low Reynolds number homogeneous, isotropic,

T(k) =Re[u.*(k)N•(k) 1, (4) and shear turbulence, the same qualitative result for the
function T(klp,q) was reported by Domaradzki and

expressing the rate of change of energy of the mode k Rogallo2"3 and Yeung and Brasseur 4 (isotropic turbu-
caused by its nonlinear interactions with all other modes in lence), and by Domaradzki et al 5 (shear turbulence): lo-
the system. cal energy transfer between two scales k and p outside the

Detailed energy transfer to/from mode k caused by its energy containing range caused by nonlocal interactions
interactions with wave numbers p in a prescribed region . with the third scale q in the energy containing range. For
of the wave-number space and q=k-p in another region high Reynolds number flows, similar behavior of the func-
Sis tion T(klp,q) was observed by Ohkitani and Kida, 6 using

Tq(k) = Re~u•*(k)N -9(k) ], (5) results of direct nmmerical simulations of a high symmetry
flow, and by Domaradzki et aL,5 using velocity fields ob-

where N :Q is given by formula (2), calculated with one of tamed in large eddy simulations of Chasnov.1 Moreover,
the contributing velocity fields truncated to 9 and the the function T(klp,q) computed by Domaradzki and
other to -. Details of such calculations are provided by Rogallo3 and Ohkitani and Kida6 in the framework of the
Domaradzki and Rogllo.2j For homogeneous turbulence analytical theories of turbulence exhibits the same features
the regions 9 and - are usually chosen as spherical wave- as observed in the simulations.
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Even though there is little disagreement concerning
properties of the function TCk jp.q), there is a serious dis-
agreement concerning physical interpretation and signifi-
cance of the observed form of T(k jp,q). in particular, for
the energy transfer process in the inertial range of turbu-
lence. Using an asymptotic analysis of triad interactions,
Brasseurt argued that the dynamical couplings between _ -

large and small scales strengthen with increasing Reynolds %C -- A

number, and this effect casts doubt on the validity of the [ '-

classical assumptions of local isotropy and, consequently, \
may require modifications in Kolmogorov's arguments, 7

leading to the universal form of the inertial range spec-
trum. On the other hand, Waleffe9 dismisses physical sig- 7
nificance of such interactions entirely, asserting that "... 10C 2C 0• WoC C 4 .5 : 70 bo

the nonlocal interactions with local transfer character of (a) k

triadic interactions is not property of turbulence physics,
but rather a general feature of the Fourier representation."
Others (Zhou and Rogallol 0 ) are inclined to treat as phys- t
ically interpretable quantities only certain integrals of
T(kjp,q), e.g., net energy flux across the spectrum, and '-' ¶,•
not the function T(k Ip,q) itself. -k

To some extent, these controversies are caused by a TV

fairly qualitative character of the above referenced analyses _
and our poor understanding of the relation between dual
pictures of turbulence, one using a physical space and the
other a spectral (Fourier) space representation. In this - . /
paper we draw several quantitative conclusions about the z
energy and the transfer spectra from the observed form of
the function T(kip,q) and propose a particular mecha- -z0 -15 -io -os n c±• L zo
nism of interactions between scales in the physical space, Ib k - p)/q

which is consistent with the observed behavior of the func-
tion T(klp,q) in the spectral space. FIG. 1. Detailed energy transfer functions T(kipq) for field C128U8:

(a) unscaled, (b) scaled using Eq. (7). The transfer spectra T(k Ip,q) are
shown for band 40<p <45, and all bands q that make a significant con-

II. SELF-SIMILARITY SCALING FOR THE FUNCTION tribution to P(kip) [the solid line in (a)]. The vertical dashed lines
T(kIp,q) delineate the band p and different bands q for which transfer curves

T(kip,q) are plotted: dashed line and plus symbols, O<q<5; double-
In Ref. 5 three different velocity fields generated by dashed line and triangles, 5 < q < 10; dotted line and squares, 10 < q < 15;

numerical simulations were considered. The velocity field dotted line and triangles, 15 < q < 20; double-dashed line and plus syvm-
C128U8 was the result of a direct numerical simulation of bols, 20 < q < 25. In (a) peaks of the transfer curves broaden for increas-

uniformly sheared homogeneous turbulence performed by ing q.

Rogers et aL 1 and LES 128 was the result of a large-eddy
simulation of forced isotropic turbulence, at a nominally
infinite Reynolds number, performed by Chasnov.7 The interacting scale in the energy-containing range (here, 5
energy spectrum of LES 128 exhibits the Kolmogorov <q < 20). Thus we observe local energy transfer between
k- 51 3 law over the entire range of simulated wave num- two scales outside the energy-containing range caused by
bers. The field K128 was obtained from a direct numerical nonlocal interactions with the third scale in the energy-
simulation of isotropic turbulence performed by Rogallo.12  containing range.

For all three fields the functions T(k Ip,q) were com- In Ref. 5 it was found that for a given energy spectrum
puted. In Fig. I (a) we show the functions T(k Ip,q) com- the following transformation collapsed reasonably well all
puted for the field C128U8 for p fixed outside the energy- curves T(kjp,q) for all bands p outside the energy-
containing range. The triad structure of the nonlinear containing range:
energy transfer term is best understood by considering in _/k--p) T(klp,q)
this figure P(klp) as a function of k (for p fixed) and q- pE()E(q) (7)
decomposing P(kIp) into functions T(klp,q) for all pos-
sible wave-number bands q. Peaks of P(k 1p) are located in The similarity variable •= (k-p)/q is deduced from
the vicinity of the prescribed p band, indicating that the geometric relations for triads with legs k, p, and q. For a
energy transfer is most effective among comparable scales fixed p and q, with p > q, the range of wave numbers k that
of motion. However, the decomposition into functions can form a triangle with those wave numbers is p - q < k
T(k 1pq) reveals that the largest contributions to this local <p+q. Therefore, for any such pair of fixed wave numbers
transfer come from the triad interactions with the third p and q the variable 4 will always be in the range - I <4g
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-< l. The scaling factor pE(pJE(q) is phenomenological. T(k p.q) from the analyses of integrated quantlites.
The result of scaling applied to the functions T(k p.q) Some of these theories may provide a partial expiana-

-is plotted in Fig. 1 (b The quality of the scaling was com- don of features of the transfer process observed in the siu-
parable for all three fields considered and it was the only ulations, but none of them is fully satisfactory. As already
scaling, among those tried, that had any success in collaps- noted, the classical theories based on the spectral energy
ing the numerical data. We must emphasize that the above flux assumptions do not account explicitly for the nonlocal
relation applies to a particular combination of two fixed interactions. On the other hand, the linear theories of the
wave numbers, q being in the energy-containing range and far dissipation range. which have nonlocal character, lead
p > q outside this range. Therefore, even though the func- to the form of the energy spectrum proportional to
tion T(klp,q) is symmetric in p and q the scaling is not, exp( -akc 2 ), contrary to the form exp( -ak), which is ob-
since this particular ordering of the wave numbers p and q served in the dissipation range of low Reynolds number
is assumed in (7). experiments (Ling and Huang' 9 and Comte-Bellot and

No explanation for the scaling (7) exists and at this Corrsin20), simulations (Kerr' 1 and Kida and Mura-
stage it must be treated as a purely phenomenological re- kami 2 ), and is also predicted theoretically by Foias et aL 23

sult akin to experimental fitting procedures. Scatter in the and the analytical theories of turbulence (Kraichnan 2 4).
data in Fig. 1 (b) is caused partially by this approximate Among linear theories only Kraichnan's analysis15 shows a
nature of the scaling and partially by the fact that in our possibility of the behavior exp ( - ak) for the spectrum of
numerical procedure we are dealing with wave-number the scalar field in the viscous-conductive range. However,
bands of finite thickness (Ak = l,Ap =$q = 5) and not with this result is obtained under assumptions of unknown va-
sharply defined wave numbers k. p. and q. Despite these lidity, and no parallel result for the far dissipation range
shortcomings of the scaling relation (7) in what follows we behavior exists. The asymptotic analysis of Brasseur8 re-
will assume that it holds for the functions T(k 1p,q) and we sults in a scaling of the energy transfer rate between two
will explore its consequences and a possible physical inter- small scales by the square root of the energy of the remain-
pretation. ing large scale rather than by its energy, as suggested by

It is important to note that according to (7) the trans- the phenomenological relation (7). Also, Waleffe's
fer scales formally with the energy E(q) of the large eddies analysis9 is unable to produce this scaling. The EDQNM
rather than with their rate of strain qE(q) 1/2, which is the theory reproduces properly the scaling (7) for power law
scaling postulated by a number of classical closure spectra in the disparate-scale limit (Domaradzki and

hypotheses.13 At the present time the dependence of the Rogallo 3), in particular, the dependence of T(klp,q) on
energy transfer process among small scales on the energy of the energy E(q) of the large scales. However, the physical

large scales observed in the simulations lacks a clear phys- interpretation of the observed transfer mechanism is not

ical explanation. Direct coupling between large and small made easier by referring to the EDQNM theory, which is

scales is postulated in the linear theories of the viscous- derived using assumptions about statistical properties of

convection range of Batchelor14 and Kraichnan15 and the turbulent fields and formal structure of the Navier-Stokes

far dissipation range of Novikov16 and Saffmann,17 but equations rather than an intuitive picture of the physical

these theories assume that the small scales are affected by processes occurring in turbulent flows.

the strain of the large scales, not their energy. For turbu-
lence in the inertial range the classical theories predict that III. PHYSICAL INTERPRETATION OF THE SELF-

the energy transfer is dominated by the local interactions. SIMILARITY SCALING

For instance, theories of Obukhov and of Heisenberg (see Dimensional analysis of the phenomenological relation
Monin and Yaglom' 3 ) express a spectral energy flux (7) indicates that T, has the dimension of time. Since the
through a wave number k as a product of two wave- function T, is the same for all pairs of wave numbers p and
number integrals involving the energy spectrum E(k) with q it must scale with a time scale of turbulence that does not
the largest contributions to both integrals coming from the depend explicitly on p and q. It is thus natural to assume
wave numbers in the vicinity of k. Thus the nonlocal in- that it is a certain integral time scale of turbulence, e.g.,
teractions discussed here are considered to be of little im- large eddy turnover time,
portance in those theories. Similar conclusions are also rk - 1/2

reached in the analytical theories of turbulence (see the 0- kE(k)dk (8)
monographs of Lesieur t and McCombla), which predict E k
that the energy flux through a wave number k in the iner- where kc denotes the wave number at the end of the
tial range is dominated by scales from the spectral vicinity energy-containing range. The quantity (8) has been corn-
of k. However, these conclusions are not necessarily incon- puted for all three velocity fields considered in this paper
sistent with the nonlocal character of the detailed transfer and is compared in Table I with the values of the positive
function T(klp,q) found by Douiaradzki and Rogallo 2'3  peaks of the function T, for these fields. The peak values
since the energy flux across the energy spectrum is ob- are within a factor 2 of the computed integral time scales.
tained as a wave number integral of T(kIp,q), and because This is probably as good an agreement as could be ex-
of the cancellation effects, the integral may not reflect the pected, in view of the fact that the formula (8) provides
nonlocal character of the integrand. One must therefore be only an order-of-magnitude estimate of the large eddy
cautious in drawing conclusions about the detailed transfer turnover time.
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TABLE I Large edd. turnover times 0 and the peak values of the au - C
self-similar tunclion T. for three different, numencal veioclty fields. _ _ _ E).

_____ _____ _____ _____ _ax) LX, Lqr
Field ® E,_

K128 0.11 0.230 The estimate (12) of the Reynolds stress is consistent
C128U8 0.02 0.026 with the classical arguments (see Mon30 and Yaglom,- pp.

LESI28 0.04 0.077 212-225), which, on the basis of the dimensional consid-
erations, postulate proportionality between the Reynolds
stresses and energy. Departure from the classical argu-
ments occurs in the estimate of aU/ax: The estimate (13)
is a composite expression that involve- a product of theConsider now the energy transfer rate to all wave num- classical estimate Uv/LQ, time scale of turbulence 0, and

bers k~p interacting with the wave-number bands (pp the rate of strain Uq/Iq Since Uqilqe U rbL e and ce0, /Lq,

+ Ap) and (q,q+ Aq). This transfer rate is equal to an area this product is much larger than the classical estimate
under the positive peak of the function' T(kfp,q) and its this p nd it suggests the existe c l eswith

estimate, using (7), is U/Lq, and it suggests the existence of flow regions with
the rates of strain determined by the velocity scale of the
large eddies and the length scale of the small eddies. Such

IH(p,q) - • T(kjp,q)Ap Aq-qpE(p)E(q)Ap Aq 0. large strains may be induced by a mutual interaction of a

(9) few large scales occurring over long enough time. For in-
stance, in boundary layer flows counter-rotating stream-The factor q in the last equality appears because the wise vortices with a length scale comparable to the

range of wave numbers k >p affected by the wave-number bisndary-aer thickn gts scar e k owtg rate in abu
bandp ad qispk<,~qas iscsse afer ormla 7). boundary-layer thickness •5 are known to generate, in about

bands p and q is p okfp+q, as discussed after formula (7). one large eddy turnover time, internal shear layers with
Due to the localness of the energy transfer process, the much smaller length scales 146 and the velocity scale com-
quantity Ht (p,q) may also be interpreted as the energy parable to the mean free-stream velocity, i.e., the velocity
transfer rate from the scales in the band (p,p+Ap) caused scale of the largest eddies. Secondary instabilities of these
by their interactions with scales from the bands (q,q)+ shear layers are responsible for the transition to turbulence
and (p,pcq). and the generation of small scales, as demonstrated exper-

The classical spectral energy transfer hyotheses usu- imentally by Swearingen and Blackwelder&7 and numeri-
ally invoke dimensional arguments, eddy viscosity con- cally by Liu and Do28aradzki38 In free shear layer flows
cepts, or analogies with the turbulent energy production by similar strong internal shears have also been observed.

the mean flow gradients in the turbulent kinetic energy Thus the existence of intermittent regions with strains

balance equation. The last approach, used by Obukhovn5  much larger than postulated by the classical theories of
and Ellisyn,2 6 is the most appealing becauseit is based on turbulence is plausible, even though it has not been sys-
the formally correct equation. The main difficulty in this tematically investigated for isotropic turbulence. It is in-

approach is a proper interpretation of the equation in terms tereting tnoesthat inothe tuoflacpass is in
teresting to note that in the context of a passive scalar in

of spectral quantities. the viscous-conductive range Kraichnan'- observes that
The turbulent energy production term is large intermittent rates of strain, if they exist in a flow, will

- Ui determine the dissipation spectrum of the scalar. The
P= -uiuj-- ,(10) above analysis of the scaling (7) provides a plausible phys-ax,

ical mechanism of the energy transfer process, where the
where u1 ju is the Reynolds stress tensor and U, is the mean role of the large scales is to produce intermittent regions of
flow. We will attempt to express (9) in a form consistent relatively strong, internal shears characterized by smaller
with (10) so that the Reynolds stresses and the rates of length scales, which serve as regions of efficient small-scale
strain of the large-scale flow can be identified. energy transfer. If one notes that E represents the inverse

The following notation is introduced: Lq= l/q-a of a collective rate of strain of all scales from the energy-
length scale of large eddies from the q band; l,= 1/p-a containing range then (13) is a fraction of the total strain
length scale of small eddies from the p band; Uq/lq, which is attributable to the action of the large scales
U,=E(q)tAq--energy of the large scales; uý from the wave-number band (q,q-s-Aq). The development
=-E(p),&p--energy of the small scales. Using this notation of such intermittent regions is the result of an evolution of
(9) can be rearranged as follows: a flow over about one large eddy turnover time, and it is

nI(p,q) ~ [E(p)Ap]{[q'E(q)Aq] 2[p'E(q)A&q]l } unlikely that any analysis that does not explicitly account
for time evolution will be able to predict scaling (7). Note

U2 ( Uq L9 \also that in this interpretation dependence of the transfer
=0 ). (11) on rates of strain in the physical space is recovered, despite

/ 1its formal dependence on the large-scale energy in the spec-
The formula ( 11) has the same form as (10) if the tral representation.

following identification is made: To confirm (or reject) the interpretation of the energy
transfer process proposed above a detailed analysis of tur-

-uluj u;. (12) bulent fields should be made.
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IV. CONSEQUENCES OF THE SCALING RELATION aU :,' U
FOR LOW REYNOLDS NUMBER FLOWS x k'E(k'dk' -.

Since the classical closure hypotheses usually concern The closure hypothesis (20) may be used to predict the
the energy flux through a given wave number, say k, form of the energy spectrum for the wave numb -rs beyond

k the energy-containing range, where it applies. The spectral
W(k) f T(k')dk'= - T(k')dk', (14) energy equation is

Jk /0

i.e., the energy transfer rate a all wave numbers k'>k a k E(k',t)dk'o= - W(kt) -2v k k,2E(k')dk'.
from all wave numbers k'<k, it is important to investigate atf k
the consequences of the scaling (11) on the flux (14). (22)

The flux (14) is obtained from (11) by considering In turbulence at low Reynolds numbers the energy
transfer from all p<k and q<k. Because of the locality of spectrum falls off rapidly for increasing wave numbers k
the energy transfer only wave numbers p in the vicinity of and for the wave numbers beyond the energy-containing
k, for instance between 1/2k and k, will contribute. There- range,
fore,

S3 
2 (t) (2W(k) d k dq H(pq) E(k',t)dk'= E E(k',t)dk'= u2 (23)

J(112 )k 0where u is the root mean square of turbulent velocity.

( Uk p)d k f (15) Using the velocity scale U(k)=u, Eq. (22) may be
f p(p/2)dk ) ( q , ( rewritten as

For k beyond the energy-containing range the integrals f=0kPER)ut2v / k' 2E(k')dk', (24)
in (15) can be estimated as follows- f0

f kwhere e is the energy dissipation rate, 6 is a constant, and
k pE(p)dp-k-E(k), (16) the explicit time dependence is omitted. Differentiating

(l/2)k (24) with respect to k we obtain the equation
fk U, U

L(17) - k2E(k) ] +2vk 2E(k) =0, (25)

where U and L are the integral velocity and length scale,
respectively. Note that, in general, these quantities depend
on the wave number k, for instance U= U(k). Using these 1
formulas the estimate of the energy flux becomes E(k) - exp( -ak), (26)

W(k) -k E(k) U(k). (18) where a= (2v)/(B(u). Equation (25) expresses an approx-
imate balance between viscous dissipation and nonlinearThe same result is obtained more directly by assuming transfer

that in (11 P Uq and Lq are replaced by the integral scales

U and L, and the rate of strain of small scales u2 is ap- aw
proximated by Ellison's hypothesis:13  T(k) = -- •- exp( -ak) (27)

up pE(p). (19) in the far dissipation range. Equations (26) and (27) are
important conclusions derived from the scaling relation

Note, however, that the derivation of Eq. (18) relies only (7), which can be compared with experimental and nu-
on the scaling relation (7) and not on its physical inter- merical results for low Reynolds number turbulence.
pretation given in the previous section. Therefore, the re- In Fig. 2(a) we plot the energy spectrum for isotropic
suits of this and the next section are independent of the field K128 and in Fig. 2(b) the spectral eneigy balance for
particular physical interpretation proposed in this work. this field. At this low Reynolds number, RA 25, all spec-

In sumrsmary, the formula (18) corresponds to the fol- tra are well resolved, with both the dissipation spectrum
lowing closure assumption for the spectral energy flux: and the transfer spectrum vanishing for large wave num-

-a [Uk bers k and in the approximate balance outside the energy-
W(k)----uiuj-1 -[kE(k)][kU(k)], (20) containing range 0<k< 10, where the above derived .x-

pressions should be valid. Using the log-linear scales we
where the Reynolds stress of the small scales is represented plot in Fig. 3 the dissipation spectrum, i.e., the energy
by (19) and the rate of straini acting on these scales is given spectrum multiplied by k2 , and the transfer spectrum for
as a ratio of the integral velocity scale U and the length this field with wave numbers k rescaled using the Kolmog-
scale of the small eddies I/k. Note that in both Obukhov orov length 77 =0.0344. It is seen that the functional form.,
and Ellison theories this rate of strain is estimated by the Eqs. (26) and (27) are in an excellent agreement with the
following expression: numerical results for the wave numbers k>10 (71k>0.3),
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-\ " -- ,beyond the energy-containig range for the turbulent Taylor-Green vor-

tex field plotted using log-linear scales and wave number k normalized bythe Kolmogorov length scale v.

i.e., for all wave numbers beyond the energy-containing
range. The slope of the curves in Fig. 3 is a/7 =2.19.

In Fig. 4 we plot in the same manner the energy and
transfer spectra for a flow at higher Reynolds number,
R_ z: 70, obtained in numerical simulations of a decaying
Taylor-Green vortex performed with an effective resolu-

_tion 5123 modes (Brachet2 9). For the wave numbers be-
o.0 a, 0.0 50 2o 250 00 MO 4D 10 50.0 50 6 6 yond the energy containing range Eqs. (26) and (27) pro-

W k vide a very good fit with the nondimensional constant

FIG. 2. (a) Energy spectrum for isotropic field K128 plotted using linear a/7h = 2.08.
scales to accentuate the energy-containing range 0 < k < 10. (b) Spectral Finally, in Fig. 5 the experimental results of Comte-
energy balance for the field K128. Dashed line, dissipation spectrum Bellot and Corrsin 20 for the dissipation spectrum of grid
-2vk 2

E(k): dash-dotted line, nonlinear energy transfer T(k); dotted
line, sum of dissipation and transfer, T(k)-2vk2E(k)=aE/at. turbulence at R;=60.7 and corresponding numerical re-

suits of Ruetsch and Maxey3° for forced turbulence at
R;,=60 are shown, again exhibiting good agreement (ex-
perimental and numerical data form a straight line on the

100 -
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k7)
FIG. 3. Dissipation 2veE(k) (solid line) and transfer spectrum T(k)
beyond the energy-containing range (broken line) for the field K128 FIG. 5 The normalized dissipation spectrum 2vk

2
E(k) in experments of

plotted using log-linear scales and wave number k normalized by the CoMte-Bellot and Corn" (0) and numerical simulations of forced
Kolmolorov length wcale 1. isotropic turbulence of Ruetsch and Mazeye ( x ).
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"log-linear plot' with formula ,'26, beyond the energy- !0

containing range. The nondimensional constant a'.l7 = Z.12
in this plot.

In view of the qualitative (scaling) character of the
assumptions leading to the closure (18) the agreement be-
tween predictions (26) and (27) and the observed form of 10o -
the energy and transfer spectra is surprisingly good. In a
similar range of Reynolds numbers Kerr-" fitted numerical ,0
energy spectra by a formula E(k) -k -5 3 exp( -ak), with
the nondimensional constant a/77=5.1. and Kida and .
Murakami2: obtained the best fit to the energy spectrum in o."
the dissipation range as k- Iexp -ak) with a/17=4.9.
Sreenivasan used as the best fit to the experimental en- 10,
ergy spectra the formula exp( -ak) with a/71= 12.7 for 0 15 LS 2.5

0.1<k(<0.5 and a/,7=8.8 for 0.5<ki 1(l.5. These results k7,

and Eq. (26) all predict the existence of the exronential
factor in the formula for the dissipation range of low Rey- FIG. 6. "otai energy nux iý k, isohid line) and contribution to the flux

from triads with wave numbers 0 < q <.k. ]k <p < k. and k < k' <*k (bro-
nolds number turbulence, but they differ in the form of the ken line). The axes are scaled as in Fig. 3 to facilitate comparison of
algebraic prefactor. At the present time the quality of the slopes in both figures.

available data is probably not sufficient to distinguish be-
tween different prefactors. In any case, the exact value of
the. exponent m in the prefactor proportional to (k7) -" Clearly, the approximation is in an excellent agreement
with positive m will influence the behavior of the energy -with the exact energy flux, and we thus conclude that it is
spectrum only for k'q=0(1). Note. however, that the fully supported by the numerical data in the dissipation
value of the exponent a/71 will depend on the exact form of range. Moreover, formula (18) and the predicted form of
the prefactor. decreasing for increasing m, since for a given the energy spectrum (26) imply that the energy flux

energy spectrum the exponential function must compen- should be proportional to exp(-ak). The numerical re-

sate for different fall-off rates associated with different pre- sults plotted in Fig. 6 are in agreement with this conclu-

factors. sion.

At this point it is appropriate to briefly compare our It may also be noted that as seen in Fig. 6 these R-type
interactions generally overestimate the total energy flux

approach to compute the energy flux with the recent re-
sults of Waleffe. 9 His analysis, performed for the inertial (but by no more than 10%). We may thus expect that the

range spectrum, leads to the conclusion that two distinct remaining triads, mostly of the F type, will result in the

classes of triad interactions operate in turbulent flows. Tri- inverse energy transfer to counter the excess of the energy

ads in class R (for reverse transfer) are characterized by transferred to small scales by the R interactions. Therefore,

the middle leg in the triad transferring large amounts of the numerical results point to the energy transfer mecha-

energy to the longest leg (small scale) and small amounts nism in the dissipation range, large forward transfer by the

to the shortest leg (large scale). In triads belonging to the class R triads, and small inverse transfer by the F class

class F (for forward transfer) the shortest wave number is interactions, which is in the diametrical opposition to the

losing energy to the middle and the smallest wave num- mechanism proposed by Waleffe9 for the inertial range dy-
bers. The triads considered as dominant in the present namics. Among other numerical works, which also do not
bers, Theithads considebutredasudomlnt in the presentry agree with Waleffe's 9 theory are the results of Ohkitani and
work, which are nonlocal but result in the local energy Kia 6 Toeatosfudta ntersmltoso
transfer, belong to class R in Waleffe's nomenclature. An Kida. Those authors found that in their simulations of a

important result from his analysis is that the energy flux flow at RA=I80, three types of interactions dominated.

(14) is determined primarily by class F interactions and Among them, the class R triads constituted about 30% of

the weaker effect of class R interactions is the inverse en- all active triads, the class F about 15%, and more than

ergy flux, from small to large scales. 50% triads were characterized by both the largest and the

In view of this result our approach to compute the middle scale losing energy to the smallest one, thus not

energy flux using Eq. (15), which takes into account only adhering to Wallefe's classification. In view of the above
the class R triads, should be incorrect. To resolve this disagreements it seems evident that the tur'-ulence dynam-ics at these lower Reynolds numbers ma• -" •ubstantially
apparent contradiction between the present approach and icsret the dynomis oumber n N inertial

Waleffe's9 theory we have calculated for the isotropic field

K128 the energy flux using Eq. (14) and the approxima, range.

tion analogous to (15), where the numerically computed
T(k'lp,q) is integrated over 0<q<jk, ½k<p<k, and V. CONSEQUENCELS OF TNE SCALING RL LATION
k' > k. The inequalities for p and q also imply that the FOR HIGH REYNOLDS NUMBER FLOWS
length of the third leg of the triad does not exceed jk. Both Closure (20) is based on the phenomenological rela-
results are compared in Fig. 6 for wave numbers k> 20 tion (7), which was obtained from the results of the direct
(7ik=0.688), i.e., outside the energy-cc'ntaining range. numerical simulations of low Reynolds number turbulence.
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However. relation (') was also found to hold for the ve- s 2, , 4
locitv field obtained in a large eddy simulation of turbu. O9(:=; ul - -•j '32)

lence at nominally infinite Reynolds number (LES128). It
may therefore be useful to formally explore the conse- where u=[![fj0 E(k',t)dk']"' is the mean turbulent veloc-

quences of this closure for high Reynolds number flows. ity. For decaying turbulence e- u3/L, where L is the inte-

In the far dissipation range of high Reynolds number gral length scale of turbulence. Then, if the constant f is of
turbulence Eq. (22) still holds, but it is unlikely that the the order unity and k> I/L (inertial range), we may ex-

velocity scale will be given by the formula (23), which pand the expression (32) in Taylor series and keep only
emphasizes scales from the energy-containing and inertial the lowest-order term in 1/k. Differentiating this result
ranges. In this case we follow Batchelor,14 Novikov, 16 and with respect to k we obtain the energy spectrum for the
Saffmann,17 who assumed that the far dissipation range wave numbers 1/L<k<l/7:
eddies interact most strongly with the Kolmogorov eddies / 2 3\

characterized by the velocity scale Vk= (Ve) 1/4. With this E(k)= • 2/31 /3k- 5/3, (33)
velocity scale the formula (26) becomes

i.e., the classical Kolmogorov inertial range form. Assum-

E~)-pexpl-- (-qk)l (28) ing the value of the Kolmogorov constant CK Z1. 5-2.0, we
k) ex J( k obtain for the constant f a range of values 0.44-0.29.

The coefficient a/77=2/f in the exponential law (28)
where 17 is the Kolmogorov length scale: for this range of values of the Kolmogorov constant is

The exponential factor in (28) is in agreement with between 4.5 and 6.9. This value does not agree with the low
some other theories of the far dissipation range. For in- Reynolds number result a/77 =2. The disagreement may
stance, Kraichnan predicts E(k) -kc exp(-ak) in the reflect differences between low and high Reynolds number
framework of the direct interaction approximation theory flows or, what is more plausible, an inadequacy of the as-
and Foias et aL23 obtain an exact sharp estimate E(k) sumption that the far dissipation range eddies interact
-o[exp( -c7ik)] using spectral properties of the Stokes most strongly with the eddies characterized by the velocity
operator. That work also suggests the prefactor k-4, but scale U=Vk= (Ve) 11. Indeed,
this result is not considered mathematically exact by the
authors. The faster falloff, proportional to exp(-b/ 2 ), is a 2v 1 2 Vk

suggested by a number of older theories (see Monin and 77-fu •-O u ' (4)
Yaglom13) and the more recent work of Smith and and if the velocity scale u is replaced by the physically
Reynolds. 32 However, Manley33 showed that the procedure more relevant velocity scale associated with the peak of the

employed by Smith and Reynolds, 32 after a reasonable dissipat vecty sale te withnt ak of de

modification, provides results in agreement with the dissipation spectrum, Vd> uk, the constant a/71 will de-
modiiatbehaviorn, t provdsress tha, at preeent tim, the crease. However, it does not seem that the value of the
exp(-ak) behavior. It seems that, at the present time, the constant a/7l for the far dissipation range can be uniquely
experimental and numerical results favor the exp( -a/c) determined in the framework of the above scaling argu-

behavior with a simple, algebraic prefactor, whose exact

form remains to be determined. ments.

In the inertial range the energy spectrum decays too
slowly to use the approximation (23). We take instead Vl. CONCLUSIONS

k )1/2 Employing the phenomenological scaling relation for
U= U(kt) - ,E(k't)dk' (29) the detailed energy transfer functions T(kIp,q) the physi-

cal interpretation of the observed local energy transfer
To avoid divergence of the integral at small k the in- caused by nonlocal triads is proposed. In this interpreta-

ertial form of the energy spectrum cannot be continued to tion the large scales of turbulence, through their mutual
k-=-0 and the specific form of the energy spectrum, which interactions, create intermittent regions of relatively large
vanishes at the low wave numbers, must be used. rates of strain, where most of the small-scale energy trans-

Because of the limitation to the inertial range wave fer occurs. An important feature of this interpretation, sug-
numbers the viscous term in Eq. (22) may be neglected, gested by the presence of the large eddy turnover time in
and using (29) one obtains the following equation: the scaling relation, is an introduction of the time scale into

k I the problem. This implies that any successful explanation
E=f6lkE(k)( E(k',t)dk' (30) of the observed energy transfer process must invoke the

So, Itime evolution of turbulence. It may be an important ob-

Introducing a variable 0(k) =SfE(k',t)dk', Eq. (30) servation in view of attempts to explain the transfer process
is reduced to by analyzing Navier-Stokes equations considered at a

given instant of time. In such analyses valid assumptions
dO about amplitudes of Fourier modes are made and conclu-

.--- k~-6O1n.. (31) sions about the dependence of energy transfer on the am-
plitudes are drawn. The transfer process, however, is de-

The solution to (31) is termined by both the amplitudes and the phases of the
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Abstract

Using a velocity field obtained in a direct numerical simulation of isotropic turbu-

lence at a moderate Reynolds number we analyze the subgrid-scale energy transfer in

the spectral and the physical space representation. The subgrid-scale transfer is found

to be composed of a forward and an inverse transfer components, both being significant

in dynamics of resolved scales. Energy exchanges between the resolved and unresolved

scales from the vicinity of the cutoff wave number dominate the subgrid-scale processes

and the energetics of the resolved scales are unaffected by the modes with wave numbers

greater than twice the cutoff wave number. The dominance of nonlinear interactions

among the largest scales in the subgrid-scale energy transfer process suggests that the

resolved nonlinear term may serve as a basis of a new approach to the subgrid-scale

modeling.



1 Introduction

Three approaches used in numerical predictions of turbulent flows are direct numerical simu-

lations (DNS), large eddy simulations (LES), and Reynolds averaged Navier-Stokes (RANS)

simulations. With currently available computer capabilities the applicability of the DNS

methods is limited to low Reynolds number turbulence. In practical applications for high

Reynolds number flows the RANS techniques are used most frequently. The main draw-

back of this method is the need for introduction of a number of phenomenological closure

assumptions and empirical, flow dependent constants.

The LES techniques, reviewed by Rogallo and Moin 1 and more recently by Lesieur 2,

are a compromise approach between DNS and RANS. In the LES large, resolved scales of a

turbulent flow are simulated directly, akin to the DNS approach, and their interactions with

the small, unresolved scales are modeled like in the RANS approach. However, contrary

to the RANS, only a part of the nonlinear interactions is modeled in the LES, and since

the modeled interactions involve small scales (usually in the inertial range of turbulence)

which have more universal character than flow dependent large scales, the hope is that such

modeling can be accomplished with less empiricism and with greater help from the theories

of homogeneous turbulence than it is the case for the RANS approach. At the present

time the most widely used subgrid-scale models are thie Smagorinsky model 3 for the LES

performed in the physical space representation and the Kraichnan 4 and the Cholet and

Lesieur models 5 if the spectral representation is used. These, as well as other subgrid-scale

models, despite exhibiting a number of desirable properties like accounting properly for the

3



global energy flux from the large to the small scales, are known to be deficient in some

respects. For instance, the models are usually purely dissipative. However, the process of

the subgrid-scale energy transfer is dissipative only in the mean and locally in the spectral

or the physical space the effect of the subgrid-scale interactions may be to either decrease or

increase the energy of the large, resolved scales. Various attempts were proposed in the past

to account for the inverse energy transfer in the subgrid-scale modeling for homogeneous

turbulence 6,7,8 and for inhomogeneous flows 9 but no generally accepted method exists.

The practical importance of the LES techniques and the deficiencies of the existing

subgrid-scale models suggest that better understanding of subgrid-scale interactions is needed

if improvements in the LES methods are to be made. To compute the effects of the subgrid-

scale nonlinear interactions a full velocity field in three-space dimensions must be known;

such detailed information cannot be obtained using current experimental techniques. Re-

quired information, however, is available in the direct numerical simulations of turbulent

flows and has been used in the past to investigate the subgrid-scale interactions and to as-

sess directly the validity of the models. Such an approach was pioneered by Clark et al. 10

for the physical space modeling and by Domaradzki et al. 11 for the spectral space mod-

eling. A major limitation of this approach is that only low Reynolds number flows can be

simulated numerically and thus it is unclear to what extent conclusions from such analyses

are applicable to more important case of high Reynolds number turbulence.

In this work we investigate the properties of the subgrid-scale nonlinear interactions

using both the physical and the spectral space representation for numerically simulated,

decaying homogeneous turbulence. The simulated flow is the Taylor-Green vortex and using
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its symmetries 12 it is possible to increase Reynolds number by a factor 2 as compared with

the general nonsymmetric flows simulated with the same number of computational modes.

It is hoped that the higher Reynolds number and the existence of a short inertial subrange

for this flow can make results of such an investigation applicable to high Reynolds number

turbulence.

2 Numerical simulations

The Taylor-Green vortex flow 13 develops from the following initial condition:

u = sin(x)cos(y)cos(z)

v = - cos(x) sin(y) cos(z) (1)

w = 0

At time t = 0 the flow is two-dimensional but becomes three-dimensional for all times t > 0

when it develops into initially well organized, laminar structures in the form of vortex sheets

which subsequently become unstable resulting eventually in a fully turbulent flow. It was

noted by Orszag 12 that the initial condition (1) has a number of symmetries which are

consistent with symmetries of the Navier-Stokes equations and are thus preserved in time

as flow evolves. In the context of spectral simulations the symmetries of the flow may

then be used to reduce number of computational modes needed to describe the flow for a

prescribed range of resolved scales. This idea was implemented by Brachet et al. 14 who

were able to simulate the Taylor-Green vortex flow with an effective spatial resolution of



256' modes at a computer cost equivalent to simulating a general, non-symmetric flow with

the resolution of 643 modes. More recently Brachet 15 reported results of simulations of the

Taylor-Green flow performed with an effective resolution of up to 864' modes and Reynolds

number RA ; 140. A similar approach to increase range of scales and Reynolds numbers

in numerical simulations of turbulence by employing symmetries of Navier-Stokes equations

16,17,18was pursued by Kida and his collaborators in a n- iber ,.. papers 1,78, employing a flow

with even greater number of symmetries than the Taylor-Green vortex. At the present time

these highly symmetric flows are the most computationally efficient means of numerically

simulating isotropic turbulence with Reynolds number R\ on the order 100.

Using the numerical code developed by Brachet 15 we have performed direct numerical

simulations of the Taylor-Green vortex flow in order to generate a turbulent velocity field

for the purpose of an analysis of the subgrid-scale nonlinear interactions. Since the details of

such simulations were extensively described by Brachet et al. 14 and Brachet 15 we report

here only a few main features of the time evolution of the flow and its properties at the end

of the run. The velocity field at the end of the run is used in the subsequent sections for the

analysis of the subgrid-scale interactions.

The flow is contained in a cube with a side length 27r resulting in wave numbers k =

(k1 , k2, k3) in the spectral space with integer components ki. In the physical space the flow

is periodic with the period 2ir in each coordinate direction x, y, and z. Because of the

symmetries the flow never crosses the boundaries x, y, and z = ar and in the subsequent

discussion it will be visualized in the so-called impermeable box 14 0 < x, y, z < 7r. The

effective spatial resolution in the simulations was 5123 modes, which, after dealiasing by the
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2/3 rule, provides the maximum wave number km = 170 in each coordinate direction. Since

the velocity and the length scale of the initial flow are order unity the large eddy turnover

time is also order unity and Reynolds number is equal to the inverse of molecular viscosity

1/v (3000 in the simulations). The simulations were run until maximum time tm = 18, i.e.

for several large eddy turnover times, with the time step At = 0.0025.

In Figs. 1(a) - 1(d) we plot the time evolution of the total turbulent energy, the total

dissipation rate e, skewness S, and microscale Reynolds number RA, respectively. Until time

t ; 5 the evolution of the flow is essentially inviscid with the total energy nearly constant.

During this period small scales are generated from the initial condition (1) resulting in a

subsequent rapid rise of the dissipation rate which peaks at t ;-: 10 and later decays because

of the decrease in the intensity of turbulence caused by the viscous damping. The skewness,

after fairly chaotic behavior until t • 10 , at the end of the run approaches -0.5, which is the

generally accepted value for this quantity in fully developed isotropic turbulence. The initial

value of R\ exceeds 1000, decays rapidly becoming an order of magnitude less at the tinl,

of the peak in the dissipation rate t ; 10, and slowly approaches the final value RA - 70 at

the end of the run.

The unnormalized energy and dissipation spectra at the end of the run are plotted i'n

Fig. 2(a). Small number of modes in the low wave number shells causes relatively large

fluctuations in these quantities at low wave numbers. In the range of wave numbers k < '-'I

the energy spectrum conforms to the inertial k-513 law with the Kolmogoroff constant 1,

the range 2.2 to 2.7. The dissipation spectrum peaks at k - 20 which, for the calculate,,

Kolmogoroff length scale rj = 0.011 in the units used, corresponds to qk P 0.2. This value,,



agrees with experimental findings 19 locating the dissipation peak in high Reynolds number

turbulence at a wave number order of magnitude less than 1/r7. Because of a significant

overlap of the energy containing range and the dissipation range it is unclear if the observed

inertial range spectrum for k < 20 is the result of the same dynamical processes that operate

at very high Reynolds numbers where there exists wide separation between the energy and the

dissipation range. Also unusually high value of the Kolmogoroff constant in the simulations

casts doubt on the significance of the observed inertial subrange as being indicative of high

Reynolds number turbulence dynamics. We may claim at best that the Reynolds number

in the simulations is high enough to capture the beginnings of the inertial range dynamics

but too low to separate it from the effects of the dissipation range dynamics. In the far

dissipation range for k > 20 the dissipation and the nonlinear transfer spectra balance each

other and have the functional form proportional to k- 2 exp(-ak) as seen in Fig. 2(b). This

form was derived L1, Jomaradzki 20 using scaling properties of the detailed energy transfer

observed in low Reynolds number turbulence.

3 Basic quantities

For homogeneous turbulence incompressible Navier-Stokes equations in spectral (Fourier)

representation are:

au'(k) = -, k2 u,,(k) + N,,(k). (2)
it-

Here, un(k) is tue velocity field in spectral space, with the explicit dependence on time

omitted, v is the kinematic viscosity, and N,,(k) is the nonlinear term
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N.(k) = -P•Pm(k) [ d3puj(p)um(k - p), (3)

2 J

where tensor Pnim(k) accounts for the pressure and incompressibility effects. The summation

convention is assumed throughout.

Let's assume that the wave number space is divided into two non-overlapping regions, L

(Iki < k,) signifying large scales, and S (Iki > k,) signifying small scales. In the LES ter-

minology these scales are also referred to as the resolved and unresolved scales, respectively.

In the LES an evolution equation for the velocity field u,(k) truncated to the region £

{ u,(k) if kc£

u 0 otherwise

is sought. The truncation operation is trivially applied to the linear terms in Eq. (2). The

nonlinear term (3) is decomposed as follows. First, it is computed with one of the contributing

velocity fields truncated to U and the other to V, where U and V may be any of the two

previously prescribed regions. Details of such calculations are provided by Domaradzki and

Rogallo 21,22 Resulting quantity, denoted by Nuv(k), describes the modification of the

mode k caused by all triad interactions involving k and two other scales, one belonging to U

and the other to V. Second, to retain the effect of such nonlinear interactions on the large

scales only, the quantity NUV(k) is truncated to the region L, with the result denoted by

Nn'ruv(k). The evolution equation for the large scales £ becomes:

jun, (k) = -vk 2 u,%(k) + N,(klk,) + N,,(klk,), (5)
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where the resolved nonlinear term is

Ni(kIk,) = N'.'"(k), (6)

and the subgrid-scale nonlinear term N,'(klk,) is

N.3(klkj) = N."-S(k) + NnLSS(k). (7)

In practice, the most straightforward way to compute (6) and (7) is to first use (3) with

the full velocity fields ui(p) and um(k - p) and truncate the result to the region C to obtain

the total nonlinear term

Nn.tot (kIk,) = NV,(kIk:) + Nn (kIkj) (8)

Next, Eq. (3) is used again with the truncated velocity fields uf(p) and u' (k - p) and

the result is truncated to the region C giving the resolved nonlinear term N,,(klk,) (Eq.

(6)). The subgrid-scale nonlinear term (7) is obtained as the difference between the total

nonlinear term (8) and the resolved nonlinear term (6).

The above described procedure has its exact counterpart in the physical space represen-

tation. Inverse Fourier transform, signified by tilde, of N,(k) (Eq. (3)) is the sum of the

convective and pressure terms in the Navier-Stokes equation in the physical space coordinates

Rn(X) = -0ii(X) ai(X) -P(x) 
(9)

Similarly, using N,,uv(k) we can define its physical space counterpart NUV(x) as well as
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,Vj 4V(x) which is the inverse Fourier transform of VVUv(k) truncated to the region kC (which

is either C or S). ",'V(x) can be interpreted as the contribution to the rate of change of the

velocity field fi,(x) at a point x made by the nonlinear interactions involving modes from

the spectral regions U and V. Note that these interactions influence all modes k which can

form a triangle with two other modes such that one is in U and the other in V. •J\2V (x)

represents a contribution to the rate of change of fi,(x) which is made by all modes from )C

interacting nonlinearly with modes in U and V. Finally, the inverse Fourier transform of (5)

is

-a 1' (x) = vV (x+ ( (10)

where the resolved nonlinear term N,(xlk,) and the subgrid-scale term gn(xlk,) in the

physical space are obtained Fourier transforming (6) and (7), respectively.

In the LES the most fundamental requirement is that the models employed properly ap-

proximate effects of subgrid-scale interactions on the energetics of the resolved scales. Thus,

in assessing the models, energy equations rather than momentum equations are usually con-

sidered. In the spectral space the equation foi the energy amplitude 1Ju(k)j2 = 'u,(k)u•,(k)

of mode k obtained from (2) is:

at1 u(k)12 = -2vk 2 u(k)12 + T(k),

where T(k) is the nonlinear energy transfer

T(k) = Re[u•(k)N,,(k)]. (12)
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For homogeneous turbulence the above equations are usually considered after summing

up contributions from all modes with a prescribed wavelength 1kl = k, giving:

a E(k) = -2vk 2E(k) + T(k), (13)at
where E(k) and T(k) are the classical energy and transfer spectra, respectively, for homoge-

neous turbulence.

Similarly, the detailed energy transfer to/from mode k caused by its interactions with

wave numbers p in a prescribed region P of the wave number space and q = k - p in another

region Q is

T•'Q(k) = Re[u•,(k)N,,•Q(k)]. (14)

Truncating T'Q(k) to another region K results in the quantity T"Q'(k) which is inter-

preted as the energy transfer to the region AC resulting from nonlinear interactions of scales

in IC with scales in P and Q. For homogeneous turbulence the regions P and Q are usually

chosen as spherical wave number bands centered at wave numbers p and q, respectively. II

this case quantity T'Q(k) will be denoted by T(klp, q). Summing quantity T(klp, q) o.cr

spherica' shells with thickness Ak = 1 centered at wave number k gives a function denot,.,

by either T:'P(k) or T(klp,q)

TKC'Q(k) = T(klp,q)= T(kip,q). ("
k-½1ak<lkl<k+1Ak

Total nonlinear energy transfer T(k) to the wave number band k is obtained by summir:i
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contributions T(klp, q) from all possible bands p and q:

T(k) = E-E'T(k1p, q) E P(k1p). (16)
P q P

Here, the function P(klp) is a result of summation of T(klp,q) over all q-bands and is

interpreted as the energy transfer between wave number bands k and p.

With this notation, the energy equation for the energy spectrum EL(k) of resolved scales,

obtained from Eq. (5), is

E"(k) = -2vk 2EC(k) + T(klk,) + T$(klk,), (17)

where

T(klk,) = TcLL(k), (18)

and

T'(kjk,) = TcS(k) + T455(k). (19)

Equivalent expressions in the physical space are obtained by considering an equation for

the rate of change of the turbulent energy of the resolved scales e4(x) = ýu,(x)fA'(x):

ae(-6'C - 2 (x) + (xjko) + T'(xlk), (20)

Ot n n

where
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T(xlk,) = fi,(x)N=(xjk,), (21)

is the resolved energy transfer and

T8 (xlko) = fs,(x)N.(xlko) (22)

is the subgrid-scale energy transfer in the physical space representation.

4 Results

Using the methodology described in the previous section and employing the numerically

simulated velocity fields it is possible to compute directly the subgrid-scale energy transfer

for any prescribed cutoff wave number k, < k,. It is customary to represent spectral

subgrid-scale energy transfer in terms of the subgrid-scale eddy viscosity

ve(klkc) T' (kI k,) k < k,, (23)v'(klc) =2k2Zf (k),

which, following Kraichnan 4, is usually normalized by the factor equal to the product of

the velocity scale [E(k,)kcl/ 2 and the length scale 1/k, at the cutoff k,

VK(klk.) = V. (kI k') (24)[E(k.:)lkc.]/2"

In order to compute the function Ts(klk,), which depends on the length of the wave

number k, according to Eq. (15) summation over all wavevectors k in a thin spherical shell

centered at k must be performed. The components of such a sum are in general of both
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signs implying that a particular mode k may be either losing energy (forward transfer) or

gaining energy (inverse transfer) because of the subgrid-scale nonlinear interactions. To

assess the relative importance of these two processes we have performed partial summations

over components of same sign, effectively splitting the subgrid-scale energy transfer to/from

scales k into the forward and the inverse transfer contributions. This procedure is equivalent

to decomposing the total eddy viscosity into two parts, a positive one associated with the

forward energy transfer, and a negative one associated with the inverse energy transfer. In

Fig. 3 we plot the total eddy viscosity and its positive and negative components computed

for three different cutoff wave numbers: one, k, = 20, at the end of the (nominal) inertial

subrange; the next, k, = 40, at the beginning of the dissipation range; and the last one,

kc = 80, deep in the dissipation range. For kc = 20 the total eddy viscosity is predominantly

positive, with the absolute values of the negative component about 30-50% of the values

of the positive component for k/k, < 0.6. For k/k, > 0.6 the ratio of the negative to the

positive component decreases to about 20%. For kc = 40 in the range k/k, < 0.6 the positive

and negative components nearly balance each other with the resulting total eddy viscosity

close to zero. For k/kc, > 0.6 both components exhibit cusp-like behavior with the cusp for

the positive component much stronger than for the negative one. Nevertheless, even close

to the cutoff the ratio of the negative to the positive component is about 15%. For the case

kc = 80 in the range k/kc < 0.6 the positive component is practically zero and the negative

one is slightly less than zero, resulting in small negative values of the total eddy viscosity.

Beyond that range, for k approaching the cutoff, the positive component increases very

rapidly, reaching at the cutoff kc values by factor 20 greater than the values of the negative

15



component. In the last figure we also plot the subgrid-scale eddy viscosity calculated by

Kraichnan 4 and Cholet and Lesieur 5 from the analytical theories of turbulence under the

assumption of the infinite inertial range. This function is essentially constant (equal to 0.267)

for k/k, < 0.6, and exhibits the cusp-like behavior for k/Ic > 0.6. We conclude from this

analysis that the spectral inverse energy transfer may be quite significant, in some cases

comparable to the forward transfer for given scales k. However, in all cases the forward

transfer dominates as the cutoff wave number is approached. Since the transfer is obtained

by multiplying the eddy viscosity by k2 , the cusp in the eddy viscosity for k/k, > 0.6 is

actually even more significant for the subgrid-scale transfer.

Using Eq. (22) we have computed the subgrid-scale energy transfer in the physical space

T-'(xlk,) for several spectral cutoff wave numbers. In Fig. 4 we plot a cross-section of this

quantity for k, = 20 and k, = 40 for a plane in the impermeable box located at y = 7r/4

The larger spectral cutoff wave number results in presence of smaller scales in the physical

space. Regions of the forward transfer (broken contours) and the inverse transfer (solid

contours) are clearly visible. Even though the overall subgrid-scale transfer integrated over

the computational box is negative, the forward and inverse transfer regions in these plots

are roughly in balance. This indicates that both effects may be equally important in the

dynamics of the flow. This conclusion agrees with the corresponding conclusion reached in

the analysis of the spectral subgrid-scale transfer. It should be noted, however, that there is

no direct relation between sets of spectral modes characterized by positive/negative transfer

and the physical space regions with the same characteristics. Assuming that in the large

scale momentum equation (5) the subgrid-scale nonlinear term N,,'(klk,) is represented using
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the classical spectral eddy viscosity model L,(klkc) of Kraichnan 4 and Cholet and Lesieur 5

Nn'(klk,) = -v(kjkc)k u(k), (25)

we have calculated the physical space subgrid-scale energy transfer for this model from (22).

The results of the calculations are plotted in Fig. 5 for k, = 20 and the same cross-plane as

in Fig. 4. The modeled transfer is predominantly of the forward type as expected from the

use of the strictly positive eddy viscosity but the appearance of weak inverse transfer regions

may seem surprising. However, it should be noted that the molecular viscosity term in the

incompressible Navier-Stokes equations results in two distinct effects in the energy equation:

the kinetic energy dissipation, which is negative everywhere, and the change in the kinetic

energy caused by work done by viscous stresses, which locally in space may be either positive

or negative. Therefore any model which approximates the subgrid-scale nonlinear term N\',

by a viscous-like term in the Navier-Stokes equations may contain regions of the increasing

kinetic energy caused by work done by the modeled stresses. In practice, however, as seen 1n

Fig. 5, these positive regions are quite insignificant since they occupy much less space than

the negative regions and have also much lower maximum values. Obviously, such model,

give poor representation of the actual subgrid-scale energy transfer as seen comparing th,.

actual and modeled transfers shown in Fig. 4(a) and Fig. 5, respectively. The conclusion-.

from the physical space analysis of the subgrid-scale energy transfer parallel those drawn

from the spectral space analysis: a relative importance of the inverse energy transfer proce,,

and an inability of the classical subgrid-scale models to properly account for it.

Cusps observed in spectral eddy viscosities in the vicinity of the cutoff wave numh4,r
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suggest that the total energy transfer across this wave number is dominated by energy

exchanges among resolved and unresolved scales from the vicinity of the cutoff. Indeed,

it has been established in a number of papers 18,21,22,23 that in numerically simulated

turbulence at low Reynolds numbers the energy transfer beyond the energy containing range

is local, occuring between scales of similar size, even though the nonlocal wave number

triads with one scale in the energy containing range are responsible for this local transfer.

One would thus expect that the subgrid-scale nonlinear interactions between the resolved

scales (k < k,) and the unresolved scales characterized by wave numbers slightly greater

than the cutoff wave number k, will dominate the subgrid-scale energy transfer process. To

evaluate this hypothesis in more detail we have calculated, for several values of the cutoff

wave number k,, the subgrid-scale energy transfer for the truncated velocity fields obtained

from the original field by setting to zero all modes with wave numbers k > ckc, where c was

equal to 3/2 and 2. In this way the effect of all modes k > ck, on the subgrid-scale energy

transfer is eliminated. In Fig. 6 we plot the resulting spectral subgrid-scale eddy viscosities

(24) for kc = 20 and k, = 40 and compare them with the eddy viscosities computed using

the full velocity field, i.e. with all modes k < k, being non-zero. It is seen that the value

of the eddy viscosity computed for c = 3/2 provides a very good approximation to the total

eddy viscosity while for c = 2 both quantities are practically indistinguishable on the plots.

The similarly calculated subgrid-scale transfer in the physical space (22) is shown in Fig.

7 for the cutoff wave number k, = 20 and two values of the parameter c, 3/2 and 2. The

plane shown is the same as in Fig. 4. The spatial structure of the subgrid-scale energy

transfer in Fig. 7 and Fig. 4(a) is the same, with differences seen only in the values of the
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transfer at particular locations. For c = 3/2 the peak values of the approximated transfer

(Fig. 7(a)) may depart by about 10% from the exact values (Fig. 4(a)) with the departures

decreasing to about 5% for c = 2 (Fig. 7(b)). Therefore, both in the spectral and the

physical space representation the subgrid-scale energy transfer for the resolved modes k < k,

can be determined with high accuracy by considering their interactions with a limited range

of unresolved modes k, < k < 2k,. It may be instructive to note that that for k, = 20 and

k, = 170 the resolved modes constitute about 0.0016 of all modes, and modes with k < 2k,

about 0.013 of all modes. Thus the dynaiiuics of the largest 0.16% modes is determined

almost entirely by their nonlinear interactions with about 1% of all modes, the remaining

99% modes not affecting visibly the largest scales. Moreover, the lack of direct influence of

small scales k > 2k, on the energetics of the large resolved scales k < k, implies that the

direct nonlocal energy transfer, inherent in the classical eddy viscosity theories 19, is not

present in our simulations. The dynamics of the largest modes observed in the simulations is

quite similar to the classical picture of the dynamics of the energy containing range in high

Reynolds number turbulence. Quoting Batchelor 24: "It seems that the energy-containing

eddies determine the rate of energy transfer by their mutual interactions, and the larger

wave-numbers adjust themselves, according to the Reynolds number, in order to convert

this energy into heat at the required rate."

For the purpose of subgrid-scale modeling it is important to investigate relations between

observed subgrid-scale energy transfer and various features of the resolved velocity field

(4). In Figs. 8, 9, and 10 we plot in the physical space representation the kinetic energy

]u(x) . u(x), the enstrophy 1w(x) . w(x), where w(x) is the vorticity, and the dissipation
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rate uv(8u/8jxk + auk/Oxj)2 , respectively. All these quantities are computed using both

the full velocity field (all modes k < km are nonzero) and the velocity field (4) truncated

at k, = 20. One cross-sectional plane at the location y = (3/4)ir in the impermeable box

is plotted and for comparison we also plot in Fig. 11 the subgrid-scale energy transfer in

the same plane. Spatial structure of energy fields for the full and truncated fields is nearly

the same. This feature is expected since the modes k < kc contain most of the total energy.

The peak values of the energy for the full field may exceed by 30% the peak values for the

truncated field. The maximum values for the dissipation and the enstrophy fields computed

using the full velocity fields are by a factor 5 greater than for the truncated fields, indicating

fairly large contributions coming from higher wave numbers k > k,. The importance of

these wave numbers is also reflected in the spatial structure of these quantities, with the full

fields showing the presence of much smaller scales than the truncated fields. Despite these

differences between the full and the truncated fields, for the enstrophy the spatial structure

of the large scale component (Fig. 9(b)) is remarkably similar to the structure of the total

enstrophy (Fig. 9(a)). In particular the regions of large values of the total enstrophy are

very well correlated with the regions where the truncated field also gives large values. This

result is somewhat surprising since the large scale enstrophy field is determined using only

0.16% of all modes. It suggests that these largest scales contain most of phase information

required to determine spatial structure of the enstrophy field, and the role of higher wave

number modes is to merely reflect the fact that the velocity gradients are steeper than can

be resolved by the low wave number modes. In other words, larger wave numbers in the

spectral space are needed to resolve steep velocity gradients rather than small eddies thought
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of as small, individual flow structures like localized vortices. The level of correlation between

the full and truncated fields for the dissipation is lower. The regions of the most intense

dissipation for the truncated field (located along diagonals, half way between the center and

the corners of the plotted plane in Fig. 10(b)) correlate well with the full dissipation field

in the same region (Fig. 10(a)) but some equally strong regions in the full field farther

away from the center do not have clear counterparts in the truncated field. Finally, all three

quantitites computed using the truncated velocity field were compared with the subgrid-

scale energy transfer plotted in Fig. 11. There is some level of spatial correlation between

the subgrid-scale transfer and the enstrophy and the dissipation fields, with the regions of

significant transfer in the vicinity (but not on the top of) regions of large enstrophy and

dissipation. Also, the regions of intense large scale dissipation are usually located on the

peripheries of the regions of intense large scale enstrophy. Interestingly, the regions of large

subgrid-scale transfer seem to correlate best with the regions of large scale energy (Fig. 9(b)).

Such correlations were observed previously 25 for different velocity fields but no convincing

physical explanation of this observation is known. The above observations are based on visual

inspection of countour plots and thus have a very qualitative character. A more quantitative

procedure would have to be used to evaluate correlations in a systematic way. Nevertheless,

this qualitative analysis clearly illustrates a fairly compiex character of inter-relations among

different physical quantities and gives no indications that any simple expression for the

subgrid-scale transfer in terms of the resolved energy, enstrophy, or dissipation exists. We

conclude from the analysis of the truncated fields that the the subgrid-scale energy transfer

is at best marginally correlated with the large scale energy, enstrophy, and dissipation. This
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analysis also reveals that the turbulent activity is spatially intermittent and its physical

locations are determined by the mutual interactions of the largest scales. The high wave

number modes in this flow cannot be interpreted as individual, small scale turbulent eddies,

but reflect the presence of steep gradients at the spatial locations determined by the large

scales.

The observed importance of the large scales, which constitute only a minute fraction

of all spectral modes, in the dynamics of turbulence is encouraging since it suggests that

their dynamics may be almost self-contained and thus the accurate subgrid-scale models

based on the large scale velocity information should be possible. The term "almost self-

contained dynamics" is not very precise but can be illustrated by the f:llowing example. In

Fig. 12(a) we plot one plane from the resolved nonlinear transfer field (Eq. (21)) and in

Fig. 12(b) the corresponding result for the total nonlinear transfer, i.e. the sum of (21)

and (22). It is seen that the spatial structure of the resolved nonlinear transfer is highly

correlated with the structure of the total nonlinear transfer. In that sense the dynamics of

the large resolved scales, which involves interactions with all modes in the system (the total

transfer) is "almost" the same as the internal nonlinear dynamics of the large scales o11.%

(the resolved transfer). The difference between both quantities is of course the subgrid-scah'

nonlinear transfer (22), which when viewed this way, is a small correction to the resolved

transfer needed to get the total transfer and to account for the non-conservative charactr

of the entire system. The large degree of correlation between the resolved and the tot,

transfers suggests that in the subgrid-scale modeling a good strategy may be to model tLI.

total (unknown) transfer using the resolved (known) transfer rather than to model the:.
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difference, the subgrid-scale transfer, as is always done.

5 Conclusions

We hav,, performed a detailed analysis of the effects of the subgrid-scale nonlinear interactions

on the energetics of isotropic turbulence. The analyzed turbulent velocity field was obtained

from a direct numerical simulation of the Taylor-Green vortex flow. Symmetries of the flow

allowed to reach the spatial resolution in the simulation equivalent to 512' mesh points and

the Reynolds number R\ ; 70. At this Reynolds number the flow exhibits a beginning of

the inertial range dynamics at the lowest wave numbers. However, even these low as well as

all higher wave numbers are still dominated by dissipative processes. Therefore, while our

conclusions are certainly valid for the disspation range dynamics it is less certain that they

are applicable to the inertial range dynamics.

An important feature of the computed subgrid-scale energy transfer, in both spectral

and physical space representation, is the presence of significant inverse energy transfers,

from the unresolved to the resolved scales. The inverse subgrid-scale transfer was predicted

and observed before in the context of spectral dynamics of homogeneous turbulence 4,6,11,8

and in the physical space for homogeneous and wall-bounded turbulent flows 7,25,9,26 The

observed significance of the inverse transfer in the energetics of the resolved scales implies

that successful subgrid-scale models should properly account for such effects. At the present

time these effects are rarely taken into account in the subgrid-scale modeling procedures.

If accounted for they are modeled by either adding a random force to the subgrid-scale

equations 7,8 or extrapolating from the dynamics of the resolved scales 9. Since most of the
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subgrid-scale transfer observed in this work is caused by interactions among highly correlated

modes on both sides of the cutoff wave number, approximating effects of such interactions by

random forces is debatable. An approach used in the dynamic subgrid-scale model 9 seems

more appropriate but it suffers from modeling the inverse transfer by a diffusion type term

with a negative diffusion coefficient, mathematically an inherently unstable situation. It

appears that alternate ways of the subgrid-scale modeling which overcome these conceptual

and mathematical difficulties should be explored.

Our analysis also reveals that the nonlinar dynamics of the resolved modes with wave

numbers k < k, is governed almost exclusively by their interactions with a limited range

of modes with wave numbers not exceeding 2k, and nonlocal, eddy-viscosity type energy

transfer is not observed. Thus, in agreement with the classical picture of the turbulence

dynamics 2 4 , the large scales o' a turbulent flow determine the energy flux down the spectrum

and the small scales play entirely passive role by adjusting themselves in such a way as to

accomodate this energy flux prescribed by the large scales.

The physical space energy, enstrophy, and dissipation have been computed for the full and

truncated velocity fields and compared with the subgrid-scale energy transfer for the same

truncation wave number. Surpriningly, these physical quantities computed for both full and

truncated fields show many similar spatial features despite the fact that the truncated field

contains only 0.16% of all modes present in the system. This result reinforces our conclusion

about the dominant role played by the very largest scales in the dynamics of the flow. The

level of correlation between these quartities and the subgrid-scale transfer varies from weak

for the enstrophy and dissipation, to moderate for the energy.
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Finally, using the observed importance of the nonlinear interactions among the largest

scales in the overall dynamnics of the resolved scales it is t. ýggested that the resolved nonlinear

term may possibly serve as a basis of a new approach to the subgrid-scale modeling.
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Figure Captions

Figure 1. Time evolution of flow quantities: (a) total kinetic energy; (b) total dissipation;

(c) skewness; (d) microscale Reynolds number.

Figure 2. Spectral quantities at the end ot the run (t = IS): (a) unnormalized spectra of

the energy (solid line) and the dissipation (broken line); (b) the dissipation spectrum (solid

line) and the transfer spectrum (broken line) outside the energy containing range. Both

quantities plotted using a log-linear scale to accentuate their exponential behavior.

Figure 3. The spectral subgrid-scale eddy viscosity (solid line) and its negative (broken

line) and positive (dotted line) components: (a) k, = 20; (b) k, = 40; (c) k, = 80.

Figure 4. The subgrid-scale energy transfer in the physical space representation: (a)

k, = 20; (b) k, = 40. Plane y = ir/4 in the impermeable box is shown. Here and in

all subsequent contour plots the solid lines represent positive values and the broken lines

represent negative values.

Figure 5. The subgrid-scale energy transfer in the physical space computed using the

spectral eddy viscosity model of Kraichnan 4 and Chollet and Lesieur

Figure 6. The spectral subgrid-scale eddy viscosity: (a) k, = 20; (b) k, = 40. The

velocity fields used to compute this quantity were the full field (solid line), the full field

truncated at (3/2)k, (broken line), and the full field truncated at 2k, (dotted line).

Figure 7. The physical space subgrid-scale energy transfer computed for k, = 20 and the

full fields truncated at (a) (3/2)k, and (b) 2k,.

Figure 8. The kinetic energy field in a plane y = (3/4)7r in the impermeable box: (a)

computed using the full velocity field; (b) computed using the resolved velocity field with
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the truncation wave number k, = 20.

Figure 9. The enstrophy field in a plane y = (3/4)7r in the impermeable box: (a)

computed using the full velocity field; (b) computed using the resolved velocity field with

the truncation wave number k, = 20.

Figure 10. The dissipation field in a plane y = (3/4)ir in the impermeable box: (a)

computed using the full velocity field; (b) computed using the resolved velocity field with

the truncation wave number k, = 20.

Figure 11. The subgrid-scale energy transfer in the physical space representation com-

puted for the cutoff wavenumber k, = 20 and shown in a plane y = (3/4)7r in the impermeable

box.

Figure 12. The nonlinear energy transfer to/from the resolved modes k < 20 represented

in the physical space: (a) caused by interactions with the resolved modes only; (b) caused

by interactions with the resolved and unresolved modes.
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Abstract

Using results of direct numerical simulations of isotropic turbulence the subgrid-scale energy

transfer in the physical space is calculated exactly employing a spectral decomposition of the

velocity field into large and small scales. Both the forward and the inverse subgrid-scale

transfer components are found to be significant. The spatial structure of the exact subgrid-

scale transfer is qualitatively compared with the spatial structure of a number of physical

quantities which are considered to govern the dynamics of the large scales of turbulence. We

find that all quantities determined by the first derivatives of the velocity field correlate poorly

with the transfer which is largest at the peripheries of regions characterized by large values

of these quantities. The spatial structure of the transfer correlates much better with the

large scale energy and the Smagorinsky's subgrid-scale energy transfer which is determined

by the second derivatives of the velocity field. None of the considered quantities is capable of

predicting sign of the subgrid-scale transfer.



1 Introduction

It is generally recognized that in the forseeable future numerical predictions of turbulent flows at

high Reynolds numbers will have to rely on models accounting for the effects of nonlinear interactions

between resolved (large) and unresolved (small) scales of motion. Commonly used models, either

for Reynolds averaged Navier-Stokes (RANS) equations or for large eddy simulations (LES), are

known to be deficient in many respects and the improvements in the models will be difficult to

achieve in the absence of underlying, generally accepted theory of turbulence. This gives impetus

to fundamental investigations of nonlinear interactions in turbulent flows which may eventually

provide better models. In such investigations 1,2,3 the nonlinear interactions between prescribed

scales of motion are analyzed using accurately resolved velocity fields obtained in direct numerical

simulations. In the context of large eddy simulations a class of subgrid-scale nonlinear interactions

is of prime importance. Clark et al. 4 pioneered use of exactly computed subgrid-scale interactions

to assess phenomenological subgrid-scale eddy viscosity models in the physical space representation.

Later, Domaradzki et al. 5 applied similar methodology to compare the exactly computed spectral

subgrid-scale eddy viscosity with eddy viscosities predicted by the analytical theories of turbulence.

More recently Domaradzki et al. 6 used the same approach in investigating the inverse subgrid-scale

energy transfer in both spectral and physical space representation and the degree of localness of the

subgrid-scale transfer.

Apart from the usefulness of this approach in assessing existing subgrid-scale models we be-

lieve that it may also be very useful in investigation of coherent structures. Indeed, despite years

of research devoted to coherent structures in turbulent flows controversies persist as to their dy-
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turbulence models that would explicitly include information about coherent structures. Since the

nonlinear energy transfer is a principal physical process influencing the evolution of turbulent fields

the dynamical significance of the coherent structures may be established if it is shown that they are

associated with significant transfer. More generally, one may argue that the existence of a noticable

correlation between a given physical quantity and the transfer implies the dynamical significance of

this quantity. Along these lines Domaradzki et al. 6 investigated qualitative correlations between

subgrid-scale energy transfer and the energy, vorticity, and dissipation fields for the symmetric

Taylor-Green vortex flow.

In this paper the same approach is used to investigate the subgrid-scale energy transfer in regular,

non-symmetric flows, and its spatial correlations with several physical quantities which customarily

are considered as being dynamically important -i turbulent flows.

2 Numerical simulations

Description of field A - 128'.

Description of field B - 256'.

3 Basic quantities

Details of calculations of the subgrid-scale interactions from the results of direct numerical simula-

tions of isotropic turbulence are described by Domaradzki et al. 6. Here we quote only the main

formulas. For homogeneous turbulence incompressible Navier-Stokes equations in spectral (Fourier)

representation are:
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-u(k) = -t2I2 un(k) + NV(k). (1)

Here, u,(k) is the velocity field in spectral space, with the explicit dependence on time omitted, v

is the kinematic viscosity, and N,(k) is the nonlinear term

N-,(k) 2 P.m (k) I dapu(p)um(k - p) (2)

where tensor Pnlm(k) accounts for the pressure and incompressibility effects. The summation con-

vention is assumed throughout.

The wave number space is divided into two non-overlapping regions, £ (Iki < k,) signifying

large, resolved scales, and S ([kj > k,) signifying small, unresolved scales. An evolution equation

for the resolved scales i.e. the velocity field u,(k) truncated to the region £

nu'(k) u,(k) if kC(
=~k (3)

0 otherwise

is:

yun (k) = -vk 2 u,,C(k) + Nn(klk,) + Nn-(klkc), (4)

where N,(klk,) is the resolved nonlinear term and N,'(klk,) is the subgrid-scale nonlinear term.

These terms are computed as follows. First, Eq. (2) is used with the full (untruncated) velocity

fields uj(p) and um(k - p) and the result is truncated to the region C to obtain the total nonlinear

term

5



Niv°(klk) = NVkkc) + N: 5 (kIk,) (5)

Next, Eq. (2) is used again with the truncated velocity fields ut(p) and zL'(k - p) and the result is

truncated to the region C giving the resolved nonlinear term Ni(kjkj). The subgrid-scale nonlinear

term is obtained as the difference between the total nonlinear term (5) and the resolved nonlinear

term.

The above described procedure has its exact counterpart in the physical space representation.

Inverse Fourier transform, signified by tilde, of Nn(k) (Eq. (2)) is the sum of the convective and

pressure terms in the Navier-Stokes equation in the physical space coordinates

S( = -<x)ii0•x) 0p(x) (6)
((x)= (x) a a(6

Similarly, the inverse Fourier transform of (4) is

a f,,(x)° = vV2ia(x) + &(xjk.) + N,,(xlk,), (7)

where the resolved nonlinear term N,ý(xjkj) and the subgrid-scale term N,•(xjkj) in the physical

space are obtained Fourier transforming corresponding expressions in the spectral space. An equa-

tion for the rate of change of the turbulent energy of the resolved scales

E(x) = iu.(x)i (x) (8)

is obtained from (7) as
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OE(x) -v(x)V 4(x) + T(xLkc) + T3(xlk,), (9)
at

where

T(xlk,) = iC(x)fV.(xjk,), (10)

is the resolved energy transfer and

T'(xlk0) = iV(x)N1'(xjk.) (11)

is the subgrid-scale energy transfer in the physical space representation.

The goal of the subgrid-scale modeling is to obtain as good as possible an approximation to the

subgrid-scale nonlinear term Nn(xkc.) using only information available in the resolved scales. Thus

on the level of the energy equation we are interested in relations between observed subgrid-scale

energy transfer (11) and various physical quantities computed for the resolved velocity field (3). In

addition to the large scale energy (8) the following large scale quantities have also been considered:

enstrophy, dissipation, vorticity production, enstrophy production, pressure, the second invariant,

and Smagorinsky's subgrid-scale energy transfer. These quantities are defined as follows. The

enstrophy is

0(x) = 2i(x)fi(x), (12)

where fj is the large scale vorticity. Introducing the large scale rate-of-strain tensor
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S=j 2 (a•, lCXj + a(1 /:3)

and the large scale rotation tensor

ft,3 =-(- ou-Ix,), (14)

we define dissipation

D(x) = vSij((x)Sij(x), (15)

the square of the vorticity production (i.e. the square of the vortex stretching term in the vorticity

equation)

P(x) = f?,(x)Sj(x)Sjk(x)fI(x) , (16)

enstrophy production

V(x) = Qix)Sj(x))2j(x), (17)

the second invariant of tI.e large scale velocity gradient tensor

R(x) = [ [Pft1 f - sijsii], (18)

and the quantity proportional to the subgrid-scale energy transfer predicted by the Smagorinsky's

model 12
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S(x) = :'x ix [(osij.)"._'d(].

4 Results

Structures in isotropic turbulence are often identified as regions of concentrated vorticity. Visual-

izations of numerically simulated isotropic turbulence 7,8,9,10 show existence of vortex tubes and

vortex sheets in such flows with vortex tubes being predominant. In Fig. 1 we plot isocontours

of enstrophy for the field A [vorticity level is ?]. The vorticity indeed forms elongated, tube-like

structures, in accordance with other simulations of isotropic turbulence. In Figs. 2(a) and 2(b)

we plot cross-sections through this enstrophy field taken in horizontal planes at distances from the

lower plane equal to a quarter and a half of the periodicity length, respectively. In Fig. 2(a) two

regions of intense vorticity are clearly visible. The elongated region in the lower left corner results

from the cut of the vortex tube along its horizontally oriented axis and the more circular region to

the right results from the cut of the vortex tube with its axis inclined with respect to the horizon-

tal plane. In Fig. 2(b) several regions with large vorticity values have generally oval shapes and,

after comparison with Fig. 1 is made, appear to result from cutting vortex tubes with axes in the

directions not far from normal to the cutting plane.

In Figs. 3(a) and 3(b) we plot subgrid-scale energy transfer (11) in horizontal planes at the same

locations as used in plotting the enstrophy. An important observation is that the calculated subgrid-

scale transfer contains regions of large forward transfer (broken line contours) and regions of inverse

transfer of comparable magnitude (solid line contours). This observation is consistent with results

of Piomelli et al. 11 for turbulent channel flow and results of Domaradzki et al. 6 for the turbulent

9



Taylor-Green vortex flow. The presence of significant inverse transfer is in direct contrt1lic•lon 1k)

the implicit assumptions made in turbulence models that the subgrid-scale interactions are of purely

dissipative character i.e. transferring energy always in one direction, from the large to the small

scales.

In this work we are mainly interested in how regions of the large transfer are located with respect

to regions characterized by by large values of the other physical quantities. In order to investigate

such spatial correlations between the computed subgrid-scale energy transfer and the dynamics

of large scales we plot transfer superimposed on contour plots of the previously defined functions

of the large scale velocity field. No attempt was made to make point-wise comparison between

the exact values for the plotted quantities nor the point-wise correlation coefficient was computed.

Our analysis is qualitative but in view of the complexity of the analyzed fields is necessary to

establish guidelines for more quantitative analysis which should be attempted later. For instance,

the presence of both positive and negative values for the computed transfer may imply negligible

correlation coefficient between the transfer and a purely positive quantity, even though both may

have a very similar spatial structure. The correlation coefficient will also be small if one quantity

is concentrated in the vicinity of the other but not on top of it. Yet such relation may imply

that both quantities are dynamically correlated even though the pointwise correlation coefficient is

small. Therefore it appears that the qualitative analysis reported here is a reasonable first step in

establishing approximate correlations between various fields and in suggesting directions for a more

quantitative analysis.

In Fig. 4 large values of enstrophy (12) are usually accompanied by large positive/negative

values 'of the subgrid-scale transfer but there is only partial overlap between these quantities. It
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transfer are located on the edges of high enstrophy regions. Even though transfer seems to bec

associated with enstrophy the reverse is not necessarily true i.e. the regions of high transfer may

be present without any significant enstrophy in their vicinity.

Higher degree of correlation is observed in Fig. 5 between the subgrid-scale transfer and the large

scale energy (8). In this case the regions of the most intense subgrid-scale transfer lie almost directly

on top of high energy regions. This is particularly clearly illustrated in Fig. 5(b) where a sequence

of the subgrid-scale regions of alternating signs forms a pattern overlapping with the pattern formed

by the large scale energy. The observed correlation is puzzling since it is expected that the energy

transfer process is associated with gradients of the velocity field, not with the velocity field itself.

This correlation may be explained if a significant fraction of the observed subgrid transfer in the

physical space is a result of an advection of the small scales by the large ones. Even though such

a process does not contribute to the change in the energy of the large scales integrated over entire

domain, it affects their energy locally in the physical space and constitutes a legitimate part of the

transfer in the physical space according to the definition (11). Obviously, such a process will be

most pronounced at the locations where the advective velocity is large and these locations coincide

with the regions of high large scale energy.

In Fig. 6 the subgrid-scale transfer is overlayed on the large scale dissipation field (15). As in

the case of correlations with the enstrophy, the regions of the large transfer are generally found

on peripheries of the regions with large dissipation. This is perhaps not surprising since both the

enstrophy and the dissipation are determined by the strength of the velocity gradients. However,

it should also be noted that the regions of the large enstrophy and the large dissipation are not in

11



the same locatio~is, with i le lissination, largest in the regions of slmall • listioiV ,ai, s. ,,.

versa.

The vorticity and the enstrophy production terms, (16) and (17), respectively, were found to be

fairly well correlated with the enstrophy field. This in turn implies tiat .ne subgrid-scale transfer

will be largest at the peripheries of the regions with large values of these quantities, similarly to

the case of the enstrophy. Plots of the transfer superinmposed on the contour plots of the vorticity

and the enstrophy production terms are shown in Figs. 7 and 8, respectively, and confirm this

supposition. Finally, in Fig. 9 the comparison is made between the subgild-scale transfer and

the second invariant for a higher resolution- ficld, run B. Again, we find that the correlations

between both fields is such that the most intense transfer is located around the edges of regions

with significant values of the second invariant.

With the exception of the energy, all the above quantities are various combinations of the first

order velocity derivatives. All these combinations correlate poorly with the computed subgrid-

scale energy transfer in a sense that large values of these quantities are found in different spatial

locations than large positive/negative values of the transfer. However, the transf-r is usually most

intense in the regions located on peripheries of the regions characterized by large values of these

quantities. It may be expected that at these locations gradients of the above analyzed quantities

will be large. It suggests that correlations between the subgrid-sca!e energy transfer and quantities

involving second order derivatives of the velocity field may be better than 1-r quantities based on

the first derivatives. One possible quantity of this kind, which is of interest in the context of this

work, is the classical expression of Smagorinsky 12 for the subgrid-scale enerv transfer. In Fig. 10

we plot this quantity superimposed on the exact subgrid-scale energy tran- er. The Smagorinsky's



iiiodel Cap)tuires locations of the most intense transfer much better thanI the uI her i ,,t

quantities, with the exception of the energy. The obvious drawback of this model is that it has a

purely dissipative character predicting the energy transfer always from the large to the small scales

whereas the exact transfer contains regions of the forward as well as inverse transfer, both being

significant.

5 Conclusions
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Figure Captions

Figure 1. Isosurface plot of the total enstrophy for the velocity field A.

Figure 2. Cut through the enstrophy field in a horizontal plane: (a) located at z = L/4; (b)

located at z = L/2, where L is the periodicity length.

Figure 3. The subgrid-scale energy transfer in a horizontal plane: (a) located at z = L/4; (b)

located at z = L/2, where L is the periodicity length.

Figure 4. The subgrid-scale energy transfer superimposed on the large scale enstrophy in a

horizontal plane z = L/4.

Figure 5. The subgrid-scale energy transfer superimposed on the large scale energy in a hori-

zontal plane: (a) z = L/4; (b) z = L/2.

Figure 6. The subgrid-scale energy transfer superimposed on the large scale dissipation in a

horizontal plane z =- L/4.

Figure 7. The subgrid-scale energy transfer superimposed on the large scale vorticity production

in a horizontal plane z = L14.

Figure 8. The subgrid-scale energy transfer superimposed on the large scale enstrophy produc-

tion in a horizontal plane z = L/4.

Figure 9. The subgrid-scale energy transfer superimposed on the second invariant of the large

scale velocity gradient tensor (the velocity field B).

Figure 10. The exact subgrid-scale energy transfer superimposed on the t,-ansfer obtained from

the Smagorinsky's eddy-viscosity model in a horizontal plane z = L/4.
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